TUFLOW - An Introduction

FMA Conference, Sacramento, USA, 2012
Bill Syme

TUFLOW $\equiv=$

TUFLOW Products

- TUFLOW "Classic"
- Grid based (regular mesh)
- Advanced 1D/2D Linking
- TUFLOW FV
- Flexible Mesh (triangles and quadrilaterals)

1D/2D linking under development

TUFLOW (Regular Grid)

- Now predominantly used for flood modeling
- Major rivers/floodplains
- Urban inundation
- Pipe network modeling
- Grid based
- Finite Difference I mplicit Solution

TUFLOW FV (Flexible Mesh)

- Predominantly used for coastal/estuarine modelling
- Finite Volume solution with shock capturing (very stable and mass conservative)
- Flooding Applications
- Excellent alternative to RMA2 and FESWMS
- Does not have the instability issues Finite Element solvers experience
- Suitable at all scales (large rivers to flume models)
- Limited 1D linking at present

BMT WBM

Grid or Flexible Mesh?

- Discuss at presentation at 10:30 to 12:00 on Thu
"I nterpreting 2D Models: When is a Model Right and When is it Wrong?"

TUFLOW GPU Module

- Up to 100 times faster
(depends on size of model and graphics card)
- Recently ran a 45 million cell model
- Presentation 10:15 to 11:45 on Friday "Rapid and Accurate Flood Modeling using the Full 2D Equations on GPUs"

2D or Not 2D?

Are all "2D" schemes fully 2D?

TUFLOW $\equiv \equiv$

TUFLOW Products solve All SWE Physical Processes

Viscosity

Sub-Grid Scale Turbulence

- Important where bed resistance term not dominant and/or rapid changes in velocity gradient
- Low Manning's n values and/or deep water
- Flow constrictions
- Smagorinsky formula preferred (varies coefficient based on velocity gradient)
- Many 2D schemes omit this term
- Never have to artificially increase viscosity

Are All schemes Fully 2D?

- NO
- Spreading or raster routing models sometimes labelled 2D
- Pseudo-2D schemes solve 1D equations in multiple directions (eg. St Venant with or without momentum, Diffusive Wave)
- Cross-momentum/inertia and eddy viscosity not modelled
- UK EA Benchmarking finding:
- Pseudo-2D suitable for national, strategic, broad-scale assessments
- Unsuitable for detailed flood hazard and impact assessments

Accuracy

Key Physical Processes

(What does your 2D scheme solve?)

Verification / Calibration / Validation

Huxley - TUFLOW Validation and Testing

Discharge ($\mathrm{m}^{3} / \mathrm{s}$)

"Calibrating" 2D Structures

Water Surface Profiles - Outlet Controlled - Adjusted Form Losses

Benchmarking - 2D Weir Flow

Triangular Hydrograph over a Free-Overfalling Sill

Embankments / Levees

(Weir Flow)

- Approach
- Test submergence across cell side

Cell sides set to 1 m high
for 2D Model (Thin Weir).

- BC Weir equation if unsubmerged
- No adjustment if submerged
- Thin Weir Test

Oblique Weirs

- Flow oblique to grid
- Weir at 45° test
- Correct using weir coefficient

2

Unit Flow Across a Broad-Crested Weir - Upstream Controlled

UK EA 2D Benchmarking

- UK Benchmarking 2010
- TUFLOW and TUFLOW FV
- UK Benchmarking 2012
- TUFLOW weak points resolved
- TUFLOW FV maintained good performance
- TUFLOW GPU performed well

FMA Challenge 2

TUFLOW

- Stands for Iwo-dimensional Unsteady FLOW
" Solves the "Shallow" Water Equations (SWE) for modeling "long waves", ie.
- Tides, Storm Surges, Tsunamis
- Floods (Rivers and Urban)
- Also solves full one-dimensional equations

TUFLOW Milestones

- 1989 TUFLOW 2D developed and dynamically linked to 1D scheme
- 1991-2000 Applied in-house to coastal and flood studies
- 2001 TUFLOW made commercially available
- 2004 Selected for London Storm Surge I nundation Study
- 2004 Dynamically linked to ISIS (UK) and XP-SWMM 1D schemes
- 2006 SMS TUFLOW and XP-2D interfaces released
- 2010 FEMA Region 3 Approval and XP-2D National Approval

The Engine of the Car

- TUFLOW is purely a computational engine
- No fancy graphics
- No CFD (Colorful Fluid Dynamics)
- Very powerful, but literally a black box

How Do You Create TUFLOW Models?

- TUFLOW "Classic" and GPU
- GIS (ArcGIS, Mapl nfo, QGIS)
- SMS TUFLOW Interface
- XP-Solutions XP-2D Interface (Dynamically linked with XP-SWMM 1D)
- User customised

GIS Based

Creating Models: GIS / Text Editor / Excel Results: GIS / SMS / WaterRIDE / Excel

MI Projection == ..\model\mi\Projection.mif ! sets the gis project: \vec{n}

Write Check Files == ..\check $\backslash 2 \mathbf{d} \backslash$? Write check files and prefix to

Geometry Control File == ..\model\M01 5m 083.tgc Read Materials File $==$..\model\materíals.tmf ? Define the Manning

BC Control File == .- \model\M61_5m_003.tbc
BC Database == .. \bc_dbase\bc_dbase.csu

XP-2D GUI

BMT WBM

Behind the Scenes

- Macro style control files
- GIS layered data approach

Layered Data Approach

- Feed into TUFLOW any number of GIS data layers
- .shp, .mif and ESRI ASClI grids
- All inputs independent of 2D cell size
- No duplication of data
- Base DEM(s) only exist once
- If a layer is updated, no need to rework inputs

Throsby Creek, NSW, 2006-2007

1D/2D Model Development

Throsby Creek, NSW, 2006-2007

1D/2D Model Results

Modeling Efficiency

- Easy to modify terrain data
- Smart - TUFLOW .xf files
(Binary dumps of processed inputs)

Topography Example Challenge 2

- With Embankments Scenario
- Ensure embankment crest correctly represented
- Without Embankments Scenario
- Remove embankments in DEM
- Base DEM not modified in either scenario

3D Breaklines

Thin Z Lines (the default)

3D Breaklines

Thick Z Lines

Create TI N Zpts Example

Create TI N Zpts Example

Create TI N Zpts Example

Quality Control

- Numerous check files and GIS layers
- Detailed volume and mass error reporting
- Simulation logging locally and across network
- Challenge 1 examples

Example Models

－Large rivers
－Small creeks
－Urban flooding
－Pipe networks
－Coastal／tidal

Urban Areas - Buildings and Fences

Detailed Urban Models

Culvert Capacity and Area

" _ccA.mif (or .shp)

- Colour Coded

Info Tool

囚

Channel:	DP1134601
pFull_Max:	100
pFull_Time:	95
Area_Max:	0.535
Area_Culv:	0.535
Time_Full:	8.017
Time_10pFull:	8.426

$\langle<\gg$ List Biggera_Q100H3_wB -

Modelling Fences!

- Able to raise element sides
- Element sides wet and dry
- Layered parameters
- eg. vary blockage and losses with height
- Collapse element sides
- Switch between u/s and d/s controlled weir flow

Collapsible Fences Animation

Modelling Blockages!?

2D Layered Adjustments

I nfiltration

- Ponded water can be infiltrated into the ground based on
- Soil properties
- Imperviousness of the surface
- Can specify saturation depth (eg. to groundwater level)
- Two infiltration methods at present
- Green-Ampt Method
- Initial Loss / Continuing Loss
- Surface imperviousness

Challenge 3 Green-Ampt Example

Cyclone/Hurricane Modelling

- Calibrated to Category 5 Cyclone Larry
- Storm Surge Studies

2D Data Output Types

- Water Levels (h)
- Velocities (V)
- Depths (d)
- Unit Flow (q)
- >10 Hazard Categories (ZX)
- Energy (E)
- Froude No. (F)
- Flows Regime (R)

Flood model \rightarrow Evac model

- Spatial
- Inundation
- Properties
- Vulnerable
- Evac centres
- Timing
- Flood warning
- Route closure

TUFLOW AD Module

TUFLOW AD

- Simulates fate and transport of dissolved and particulate constituents
- Point source pollution
- Sewage discharges / Industrial outfalls
- Concentrated (piped) stormwater flows
- Leakage from high hazard sources
- Diffuse source pollution (eg. from catchment runoff)
- Estuarine dynamics

0 00:00:00

Advection Dispersion Modelling

Leakage from High Hazard Sources
Elev. (m) Conc. (mg/l)

Courtesy CAPITA-SYMONDS, UK

TUFLOW MOR Module

TUFLOW $\equiv \equiv$

TUFLOW Manual

- 550 pages
- Hyperlinked
- Easy to navigate
- Very detailed
- Messages and Tutorial Wikis

TUFLOW

 User ManualGIS Based 2D/1D
Hydrodynamic Modelling

$$
2010 \text { (Build 2010-10-AB) }
$$

.tcf File Commands tac File Commands the File Commands tef File Commands ecf File Commands

TUFLOW

Forum

－Post and reply to topics
－Receive emails of TUFLOW updates and announcements
－～1，000 members

Welcome Guest（ Loa in \mid Reasiste
－TuFLow Forum
 －About This Forum and Announcements

Forum Feedback In：－
畗 Announcements ．TUFLow Modelling

Forum	Topics	Replies	Last Post Info
1080 10／20 Linking	${ }^{23}$	24	（1）Today，03：03 PM In：Interpolation of 1D results．．． By：tuflowuser
風 10 Domains			Q Today，02：16 PM

10 Domains
－www．tuflow．comlforum

TUFLOW Wiki

- Covers
- Messages Database
- Tutorial Models
- Tips and Tricks
- Continuously under development
- Need to register

Page Discussion
Main Page
Welcome to the TUFLOW Wiki
Navigation
Main page Community portal Current events Recent changes Random page Help

Toolbox

What links here Related changes Related chang Upload file Special pages Printable versio Permanent link Page rating Browse properties

Under On-going Development

This wiki site contains information on building and running a TUFLOW model. It is designed to be used in conjunction with the TUFLOW forums (http://www.tuflow.com/forum/) 巴and TUFLOW website (http://www.tuflow.com/) 函. The wiki is designed to both as a repository of information and also to allow for feedback. For each page on the website there is a "Discussion" page, this can be edited by all registered users and we encourage you to share ideas, provide feedback and request clarifications.
To get started please start browsing the categories below, whilst this site is under construction it is only accessible by registered users. The TUFLOW wiki introduction page also contains more information that might be useful for new users.

TUFLOW Message

 Database- About This Database
- 0xxx TUFLOW Messages
- 1xxx TUFLOW Messages
- 2xxx TUFLOW Message
- 9xxx TUFLOW Messages

Tutorial Model

- Tutorial Model Introduction
- Tutorial Module 1 (2D only
model)
- Module 2 (Embedded Culverts)
- Module 3 (1D Open Channel)

Tips and Tricks
Tips and Tricks (Listed by Software Package)

- Maplnfo
- Vertical Mapper
- Encom Discover
- UltraEdit
- Excel
- DOS Window
- TextPad
- ArcGIS
- saga gis

TUFLOW Wiki Tutorial Models

- All modules from 2007 tutorial models being updated and incorporated
- Aiming for a new module per month over next year
- Will have around 12 modules all up to cover majority of TUFLOY/'s features

Navigation

Main page
Community portal
Current events Recent changes
Random page
Help

Toolbox
What links here Related changes Upload file Special pages Printable version Permanent link Page rating Browse properties
 a Bill Syme My talk My preferences My watchlist My contributions Log out 柿 A

Page Discussion
Read Edit View history

Tutorial Module01

Introduction

Wiki Tutorial Model

- Very useful for in-house training
- Designed for
- Mapl nfo with Vertical Mapper
- Mapl nfo with Discover 3D
- ArcGIS with Spatial Analyst
- QGIS (free open source GIS)
- Can simulate models without a TUFLOW licence
- Download files/models from Downloads page on www.tuflow.com

TUFLOW Wiki Tips and Tricks

- Tips and Tricks from Chapter 12 of the manual being added
- New ones added and will continuously be added
- Use Discussion page or email
support@tuflow.com to comment or make

TUFLOW Wiki Developer's Zone

firciox
Developer Zone - Tuflow
(-. 3) wikituflow.com/index.phpititie=Developer_Zone

Developer Zone

Navigation
Main page
Community portal
Current events
Recent changes
Random page
Help
Toolbox
What links here
Related changes
Special pages
Printable version
Permanent link
Page rating
Browse properties

Currently Under Construction

Introduction

The aim of this page is to provide a means for users of scripts / tools for pre and post processing of TUFLOW data to share ideas and scripts. As more TUFLOW users are using ArcMap or Quantum GIS as a GIS environment for creating TUFLOW models we want to streamline the process.

Utilities for ArcMap and QGIS are planned to be open source, they will be available for download from this page. Sharing any changes, enhancements or new utilities will make modelling in these packages easier for all involved. As well as being able to download the utilities from this page, the aim is for developers to be able communicate to prevent duplication of effort.

A lot of effort has gone into the Maplnfo utilities (miTools), which are available as an additional module on a standard TUFLOW licence. These will continue to be developed and supported by BMT WBM as an additional module. Please add suggestions below, in the TUFLOW forume or by emailing mitools@tuflow.com.
If you are interested in the source code and contributing utilities please email support@tuflow.com and we can arrange editing writes to this page. Otherwise, if you wish to make suggestions this can be done on the discussion page.

Utilities

ArcGIS	Quantum GIS	Mapinfo	Non GIS
Information on ArcGIS tools - A quick tour on sharing tools for Arces - Working with ArcPy E? The following utilities are available: - Create Empty GIS Files - Corvert breakline to 2d_zsh format - ? - ?	Information on plugins for QGIS: - Developing Python Plugins E? - Quantum GIS API documentation © The following utilities are available: - No QGIS utilities are available yet The following utilities are under development: - Currently none under development	The following utilities are on the wish list:	Matlab - netcdf to csv Python Other

BMT WBM

Summary

- TUFLOW successfully applied to:
- Rivers, Creeks and Floodplains (2D or 1D/2D)
" Urban Flooding (Overland 2D; Channels, Pipes, Manholes and Pits 1D)
- Hydrologic Modeling (Direct rainfall application)
- Estuaries / Coastal Waters / Storm Surges
- GIS Based - Cost Effective
- Create and view models via GIS, or SMS and XP-2D Interfaces
- Used around the world by more than 400 organizations Most used 1D/2D Flood Modeling Software in Australia and the UK

TUFLOW Advantages

- Verified, Calibrated (many times), Benchmarked
- Highly Efficient and Cost Effective
- Large Range of Features
- Layered Data Approach / No Duplication of Input Data
- All Inputs Independent of 2D Grid
- Fast and Accurate (Solves Full 2D SWE)
- Detailed Manual / Active Online User Forum and Wiki

thank you

