

Modelling of Bridge Pier Afflux in 2D

Bill Syme / Phillip Ryan

Presentation Overview

Modelling of Bridge Afflux

- Why is it important
- Common Methods used

Test Model

- Numerical Engines Used
- Model Configuration

Findings

- Recommendations
- Conclusions

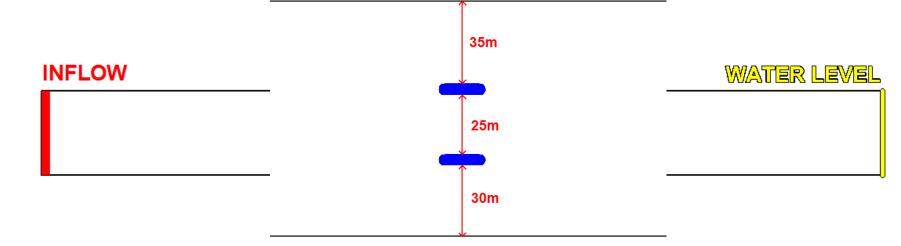
Presentation Overview

Why is modelling of bridges important

- Can be key in controlling flood behaviour
- A range of different methods used in practice
- No specific guidelines for 2D modelling

Focus of this presentation on the afflux caused by the

- Do different methods/schemes produce consistent results?
- Are results affected by
 - Model resolution
 - Cell alignment
 - Viscosity
 - Other parameters



Test Case Model

Simple Test Case Model

- 1000m x 100m rectangular channel
- Manning's n value of 0.025
- Fixed tailwater
- Inflow ramped up over 15minutes to 300m3/s and held steady for 45min
- 2 piers, each 5m wide x 20m long with rounded ends

NUMERICAL ENGINES USED

TUFLOW "Classic"

- Grid based (square cells)
- Finite Difference Scheme
- Alternating Direction Implicit

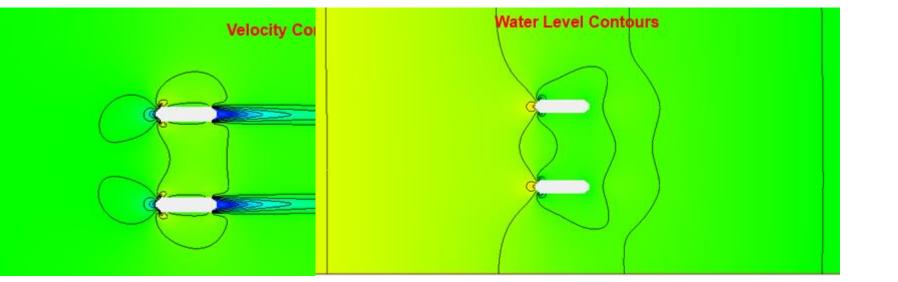
TUFLOW GPU

- Grid based (square cells)
- 1st Order Finite Volume
- Explicit

TUFLOW FV

- Flexible mesh (quads and triangles)
- 1st and 2nd Order Finite Volume
- Explicit

Modelling Method Block Cells Out

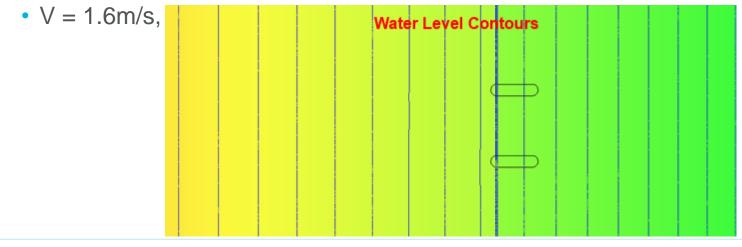

Elements are turned off, or raised to become dry

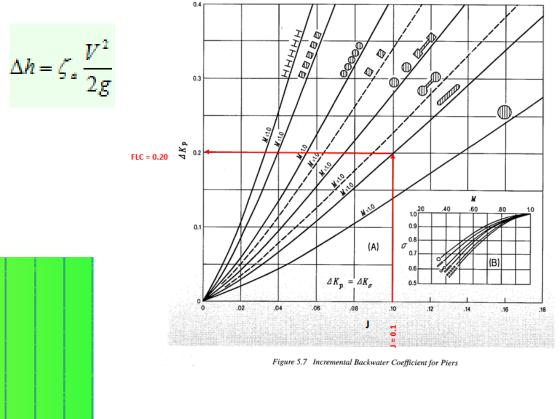
Pros

• Provides realistic velocities distribution

Cons

• Requires a high resolution mesh to resolve

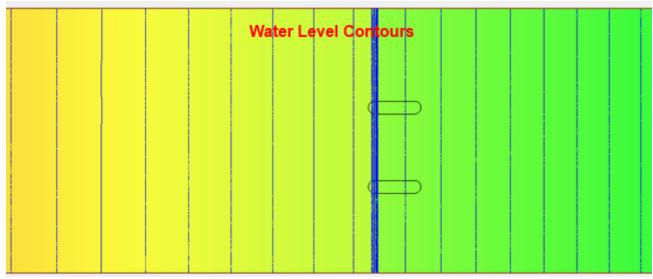




Modelling Method Form (Energy) Loss Coefficient (FLC)

Form Loss Coefficient (FLC)

- Energy loss based on fraction of V2/2g Hydraulics of Bridge and Waterways (Bradley, 1978; AUSTROADS)
- J = 10m (pier width) / 100m (flow width)
- Kp = 0.2
- Whole waterway value for bridge

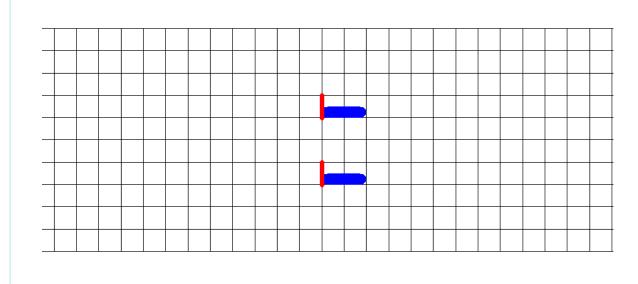


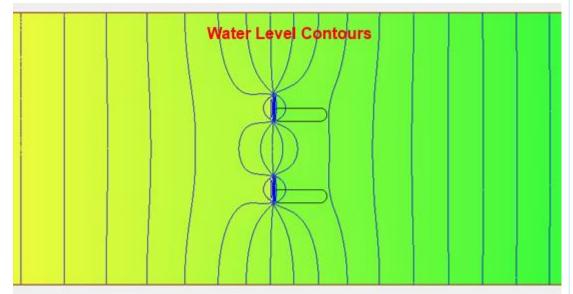
Modelling Method Waterway FLC + Cell Width Reduction

FLC (as per previous method)

Cell width reduction applied

- 10% flow width reduction
- Applied equally to all cells across
- Reduction in flow width, gives increased velocity and therefore greater losses

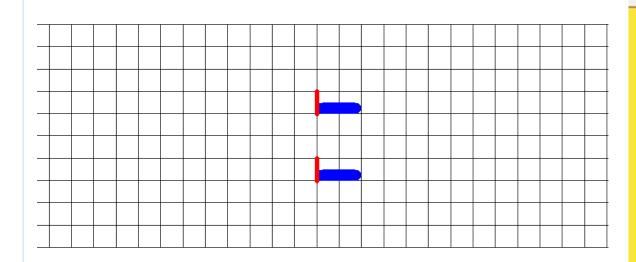


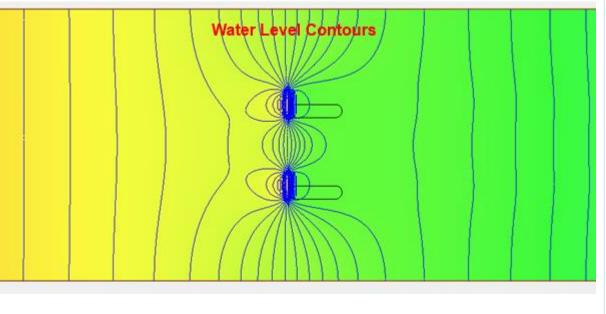

Modelling Method FLC Only on Pier Cells

FLC only applied to pier cells

For pier only FLC factor up whole waterway FLC

- Waterway FLC = 0.2, but only applied over 2x10m width (based on a 10m cell resolution)
- Pier Only FLC = 0.2 x 100m/20m = 1.0 (used same FLC and width of cells for finer grids for simplicity)




Modelling Method Pier Only FLC + Cell Width Reduction

Pier Only FLC (as per previous)

Cell width reduction applied over the same cells

• reduced by 0.5 (5m pier width / 10m application width)

Preliminary Results (Still need to QA review results)

Afflux in mm (50m upstream) CPU GPU FV 1 st Order	10.0m	5.0m	2.5m	1.0m	0.5m	0.25m
Block Cells Out	71	28	20	17	15	na
	196	83	46	28	22	20
	98	39	37	30	26	na
Waterway FLC	26	26	26	26	26	na
	26	25	25	25	25	25
	25	25	25	25	25	na
Waterway FLC + Cell Width Reduction	30 41 30	29 36 30	28 35 30	28 34 30	28 34 30	na 34 na
Pier Only FLC	24	20	20	20	20	na
	19	18	18	18	18	18
	17	17	18	18	19	na
Pier Only FLC + Cell Width Reduction	28	25	26	26	26	na
	45	36	40	45	48	58
	35	36	37	38	40	na

Observations

Application of FLC across whole of waterway produces

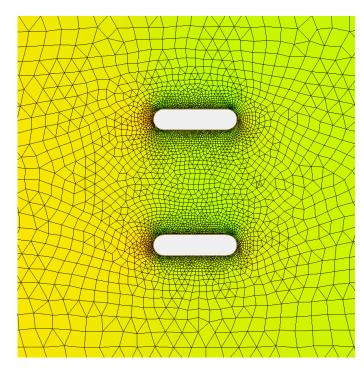
- Correct and consistent afflux upstream (compared with Hydraulics of Bridge Waterways)
- Poor/incorrect near field velocity/water level distribution around piers

Blocking Cells Out

- Afflux resolution dependent tends to decrease as the cell size decreases
- Afflux scheme dependent (1st order schemes may produce higher affluxes)
- Coarser resolutions tend to over predict afflux compared with HBW (especially 1st order schemes?)
- Finer resolutions better represent velocity field, but tending towards under-predicting afflux (may need additional losses)

Applying the Pier Only FLC tends to under predicts losses cf HBW – reducing cell widths seems to be needed

Other Considerations

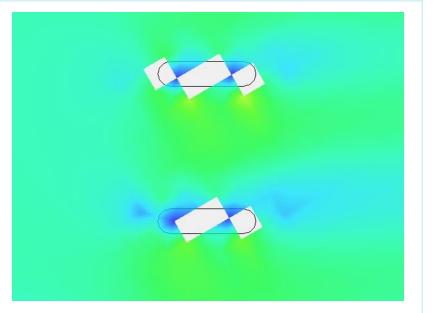

Cell alignment

- With fixed grid, very hard to align to all bridges in a model!
- This is much easier in a flexible mesh (results not ready as yet)

Influence of Viscosity

- Method (Constant / Smagorinsky)
- Viscosity parameters

Bridge pier shapes


Cell alignment

Rerun model with alignment of 30 degrees

No effort to be careful in selecting cells

- Dry cell selected based on the cell centre falling within the pier
- Dry cell shown for 5m model on the right

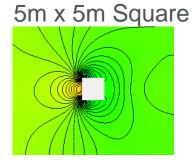
	0 d	egree rotat	ion	30 degree rotation			
	10.0m	5.0m	2.5m	10.0m	5.0m	2.5m	
Block Cells Out	71	28	20	67	49	29	
Waterway FLC	26	26	26	24	24	24	
Waterway FLC + Cell Width Reduction	30	29	28	29	28	27	
Pier Only FLC	24	20	20	30	24	20	
Pier Only FLC + Cell Width Reduction	28	25	26	32	29	26	

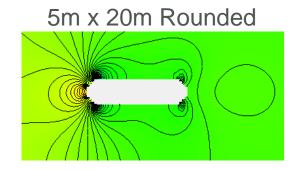
Viscosity Influence

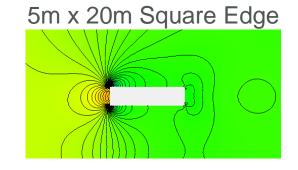
Rerun model with 3 viscosity datasets

- Smagorinsky of 0.5 / Constant component 0.05 (current default)
- Smagorinsky of 0.2 / Constant component 0.1
- Constant formulation 1.0

	Smagorinsky (0.5)		Smagorinsky (0.2)				Constant (1.0)					
	10.0m	5.0m	2.5m	1.0m	10.0m	5.0m	2.5m	1.0m	10.0m	5.0m	2.5m	1.0m
Block Cells Out	71	28	20	17	69	27	19	17	65	25	19	5
Waterway FLC	26	26	26	26	26	26	26	26	26	26	26	26
Waterway FLC + Cell Width Reduction	30	29	28	28	31	30	29	29	32	30	30	30
Pier Only FLC	24	20	20	20	23	20	20	20	21	21	21	21
Pier Only FLC + Cell Width Reduction	28	25	26	26	37	30	30	32	43	37	36	37






Pier Shape

Run GPU solver with 3 different pier shapes

Elements blocked from mesh

	10.0m	5.0m	2.5m	1.0m	0.5m
5m x 5m Square Edge	192	79	45	37	31
5m x 20m Rounded Edge	196	83	46	28	22
5m x 20m Square Edge	196	83	46	39	33

Findings

Based on the comparisons of the preliminary model simulations (>700 simulations thus far!)

Waterway or Pier Only FLC is the recommended approach

Provides consistent head loss (cf HBW) with variations in

- Cell size
- Cell Alignment
- Numerical schemes
- Viscosity

For complex 3D flow problems check your model results with other methods/literature

CFD or Physical modelling may be required for complex pier arrangements

Further Research

Analyse other pier configurations

Compare a wider range of schemes/methods

- 1D / 2D methods
- Flexible meshes

Provide benchmark tests / provide guidelines

Haven't even discussed what happens when the bridge deck surcharges!

