Using 2D Schemes to Model Energy Losses at Structures and Bends – Beware of Pretty Images!

Bill Syme

BMT WBM Software Business Manager

2D: Looks impressive, but is it accurate?

Form Losses

Energy dissipated as heat due to changes in velocity magnitude and direction

Pronounced at

- Bends
- Flow constrictions (structures)

Form loss coefficient

- Proportion of dynamic head (V²/2g) lost
- V = 1m/s; Dynamic Head = 0.05m
- V = 4m/s; Dynamic Head = 0.82m

Right-Angled Bend 1D vs 2D

River Bends

Average Vel 3-4 m/s, 20 m deep, 0.7m superelevation

Calibration at

1D Equations

- Don't simulate bend losses
- Need to apply additional losses (eg. higher n or energy loss)
- Superelevation not modelled

2D Equations

- Simulates bend losses and superelevation
- Don't simulate all losses such as those in the vertical (eg. helicoidal circulations)

3D Equations

- Layered 3D should be closer again, but there are assumptions
- CFD using the Navier-Stokes equations should be closest

45° to 180° Bends • 1D FLC: 0.5 to 1.5 • 2D FLC: 0.1 to 0.4

2D vs 3D? (from a presentation in 2001)

Test Case: Bend Loss

- Aim: Assess the estimated losses resulting from an abrupt bend
- Validate against laboratory experiment results (Malone 2008)

TUFLOW

Test Case: Bend Loss Empirical equations from laboratory results 0.20 $y = -0.2967x^2 + 0.4905x$ $R^2 = 0.9866$ $y = -0.2244x^2 + 0.374x$ $R^2 = 0.9671$ 0.15 Δ / = -0.1452x² + 0.2815x **sp //q h** 0.10 $R^2 = 0.9901$ Ш Å, y = -0.0898x² + 0.1431x 0.05 $R^2 = 0.8569$ $y = -0.0598x^2 + 0.0725x$ $R^2 = 0.4291$ 0.00 0.0 0.4 0.7 1.1 $\mathrm{Fr}^{2}_{\mathrm{ds}}$ ■ 30 deg ◆ 45.2 deg ▲ 58.5 deg ● 76 deg ▲ 90.5 deg

Bend Loss: Model Configuration

- Scaled to match dimensions of laboratory test
- 0, 45 and 90 degree scenarios. 15ft grid resolution.
- Free overfall conditions at the downstream boundary

Initial Model Comparisons

Differences between schemes most likely due to different numerical solutions

Schemes thus far tested show reasonable correlation

Note that flume test results have scatter

3D effects or energy losses are not modelled therefore should 2D schemes under predict?

- If scheme under predicts, can calibrate by adding additional form losses for 3D (vertical) and fine-scale losses
- If scheme over predicts, can't calibrate or allow for 3D/fine-scale losses unless a **negative** form or energy loss is applied...

Bends – Conclusions 1D and 2D Approaches

1D

Apply extra losses by

- Form loss coefficient, or
- Increasing Manning's n

Do not model superelevation

2D

Form losses inherent / Models superelevation However

- Are model elements too coarse to simulate all losses?
- Are there losses in the vertical plane? (eg. helicoidal circulations)

Additional form losses may be required (hard to apply/justify if scheme over predicts)

Does your 2D scheme under or over predict losses at bends?

Contraction and Expansion Losses

1D: Traditional Approach Uses Contraction/Expansion Losses

1D Structure Entrance and Exit Loss Coefficients

Coefficients adjusted according to approach and departure velocities in a 1D network (not yet available when connected to 2D)

Default unadjusted values typically 0.5 and 1.0

Can fix losses (ie. no adjustment) if desired Energy loss is C*V_s²/2g

$$C_{entrance_adjusted} = C_{entrance} \left[1 - \frac{V_{approach}}{V_{structure}} \right]$$
$$C_{exit_adjusted} = C_{exit} \left[1 - \frac{V_{departure}}{V_{structure}} \right]^{2}$$

2D: Contraction/Expansion Losses are not specified Or should they be...?

Constriction Test Case

- Assess models estimate of losses resulting from a constriction (eg. bridge abutments)
- Test for cell size spatial convergence
- Compare with Federal Highways Administration Equations (Hydraulics of Bridge Waterways, Bradley, 1978)

Constriction Model Configuration

Initial Model Comparisons

HEC-RAS 5.0 Diffusive Wave is very diffusive!

HEC-RAS 5.0 Momentum diffuses rapidly downstream / tends to over predict cf FHA

MIKE21 tendency to over predict cf FHA

TUFLOW Classic tendency to under predict

Differences most likely due to different numerical solutions

Results/trends between schemes consistent with bend tests

3D (vertical) and fine-scale losses (eg. venacontracta) not modelled therefore should 2D schemes under predict?

• Same trends / issues as for bends

All except HEC-RAS Diffusive Wave have reasonable cell size spatial convergence

Testing very preliminary, but illustrate that different $e^{\frac{3}{2}}$

Box Culverts

2D Cell Modifications

(2d_fc or 2d_fcsh layers)

Bridge decks

Box culverts

Additional losses

- Deck surcharging
- Piers
- Vena-Contracta

Partial blockage

"Calibrating" 2D Structures

For example, if we apply a 0.2 FLC, ie. add $0.2*V^2/2g$ energy loss

TUFLOW Classic tends to require some additional form loss for sub-cell fine-scale losses and any 3D effects

Typically 20 to 30% of 1D energy loss values

May not be applicable to other 2D schemes, especially those that over predict losses

Water Surface Profiles - Outlet Controlled - Adjusted Form Losses

BMT WBM

23

1D/2D Link Options

SX Link

HX Link (Preserves momentum)

Both SX and HX dissipate energy downstream due to 2D solution expanding the flow

Applying full exit loss on 1D duplicates downstream energy loss

"Calibrating" 1D Culvert linked into 2D

Calibrated 2D Only Scenario

• Added 0.2 form loss

Culvert as 1D Element (SX or HX Link)

• Reduce exit (form) loss coefficient by 0.2

Water Surface Profiles - Outlet Controlled - Adjusted Form Losses

Modelling Decks and Culverts – Conclusions

Culvert as 2D Cell(s)

- TUFLOW Classic 2D solution models 70 to 80% of losses
- Sub cell fine-scale losses (eg. vena-contracta) and 3D effects can't be modelled by a 2D scheme
- Need 20 to 30% additional form or energy loss

Culvert as 1D Element

- Over predicts losses by 0 to 70%
- Small 0% over prediction
- Large up to 70% over prediction
- Reduce inlet / outlet losses of 1D element(s)

Overall Conclusions

2D contracts and expands flow lines

• Inherently models form losses due to contraction and expansion of flow

Not all losses are represented

- 3D (vertical) and sub-cell, fine-scale losses
- Need ability to add form losses (calibrate)

Need momentum and viscosity terms

Some 2D schemes may over predict losses – benchmark your scheme

Linking 1D structures into 2D

- Useful when the structure is small
- Large structures (relative to 2D cell size) may duplicate (over predict) losses
- May need to reduce inlet / outlet losses (calibrate)

Benchmark, check and UNDERSTAND your results

thank you

