

Rapid and Accurate Stormwater Drainage Assessments Using GPU Technology

IECA-SQ Conference Brisbane, Australia Chris Huxley

Presentation Overview Urban Direct Rainfall Modelling (1D +2D)

- 1. TUFLOW HPC
 - What it is?
- 2. Case study example
 - Where?
 - How the modelling was done?
- 3. Modelling advice
 - What matters

TUFLOW HPC (Heavily Parallelised Compute) New to TUFLOW 2017

- 1. Alternative fixed grid 2D solver to TUFLOW Classic
- 2. TUFLOW GPU Mark II
 - Improved 1st Order solution scheme from TUFLOW GPU
 - New 2nd Order solution (the default)
 - Change in cell schematisation to utilise cell sides
 - All 1D/2D linking functionality (HX and SX)
 - All 1D functionality
 - Unconditionally stable
- 3. Runs on CPUs and Nvidia GPU devices

Presentation Case Study Location

Study Overview

- Cassowary Coast Regional Council (CCRC)
- Hydraulic assessment of urban drainage infrastructure for 10 major towns

Study Objectives

- Review of existing network
 capacity / performance
- Development of a future infrastructure upgrade plan

Cardwell Innisfail CBD Innisfail East Innisfail Estate Mission Beach Mourilyan Silkwood South Johnston Tully Tully Heads / Hull Heads

Urban Stormwater Modelling Data Inputs What inputs go into an urban stormwater 1D / 2D direct rainfall hydraulic model?

Urban Stormwater Modelling Data Inputs Spatially Varying Landuse and Soil Data

- Bed resistance
 - Depth varying
 - Log law
- Perviousness
 - %
- Loss options
 - Rainfall excess
 - IL / CL infiltration
 - Green Ampt
 infiltration
 - Horton infiltration

Urban Stormwater Modelling Data Inputs Topography Data

- LIDAR
- Ground Survey
- Bathymetric survey /crosssections
- Design drawings
 (12D, LandXML)

Urban Stormwater Modelling Data Inputs Stormwater Network

- Inlets
- Manholes or junctions
- Stormwater pipes

Water Depth (m)	Discharge (m ³ /s) per m length of lintel													
	0% blocked	10% blocked	20% blocked	30% blocked	40% blocked	50% blocked								
0.00	0.000	0.000	0.000	0.000	0.000	0.000								
0.05	0.018	0.017	0.015	0.013	0.011	0.009								
0.10	0.053	0.047	0.042	0.037	0.032	0.026								
0.15	0.096	0.086	0.077	0.067	0.057	0.048								
0.20	0.148	0.133	0.118	0.104	0.089	0.074								

New "Road Crossfall" option to improve flow capture at pits

Urban Stormwater Modelling Data Inputs Stormwater Network

- Inlets
- Manholes or junctions
- Stormwater pipes
- Gates, Spillways, Weirs, Backflow control devices

Variety of energy loss options
Fixed (optional) = QUDM compatible
Engelund method (default)
1) Expansion / contraction of flow
2) Changes in pipe size
3) Changes in angle at junctions
4) Change in elevation at junctions

Urban Stormwater Modelling Data Inputs Hydrologic Input Options

Hydrologic Model inflows RORB, URBS, WBMN, XPRAFTS or user defined

or

Direct Rainfall (used in CCRC study)

Urban Stormwater Modelling Data Inputs Direct Rainfall Example

What is rainfall on grid?

Rainfall is applied to every 2D cell.

The hydraulic model routes flows (2D SWE)

Avoids potential errors associated with hydrologic sub-catchment delineation

Urban Stormwater Modelling Data Inputs Direct Rainfall Example

What is rainfall on grid?

Rainfall is applied to every 2D cell.

The hydraulic model routes flows (2D SWE)

Avoids potential errors associated with hydrologic sub-catchment delineation

Excellent representation of key physical processes

- 1) / Rainfall
- 2) Hydrologic losses (infiltration)
- 3) Runoff
- 4) Flow capture by the stormwater network
- 5) Energy loss within the underground pipe network
- 6) Above / below ground stormwater network interactions

Urban Stormwater Modelling Data Inputs Direct Rainfall – 1D/2D integration

Dynamically linked 1D stormwater network and 2d overland flow model

Accurate representation of overflow into neighbouring drainage areas if stormwater network capacity is exceeded

Accurate topography data What 2D model resolution... How fine for urban situations?

• 20m 7,500 cells

- 20m 7,500 cells
- 10m 31,000 cells

- 20m 7,500 cells
- 10m 31,000 cells
- 5m 125,000 cells

- 20m 7,500 cells
- 10m 31,000 cells
- 5m 125,000 cells
- 2m 750,000 cells

- 20m 7,500 cells
- 10m 31,000 cells
- 5m 125,000 cells
- 2m 750,000 cells
- 1m 3,100,000 cells

- 20m 7,500 cells
- 10m 31,000 cells
- 5m 125,000 cells
- 2m 750,000 cells
- 1m 3,100,000 cells
- 0.5m 12,500,000 cells

Accurate topography data What 2D model resolution... How fine for urban situations?

• 20m 🗶

7,500 cells

Accurate topography data What 2D model resolution... How fine for urban situations?

- 20m 🗶
- 7,500 cells

• 10m 🗶 31,000 cells

Accurate topography data What 2D model resolution... How fine for urban situations?

- 20m 🗶
- 10m 🗶 31,000 cells
- 5m 🗶

125,000 cells

7,500 cells

Accurate topography data What 2D model resolution... How fine for urban situations?

- 20m 🗶
- 10m 🗶
- 5m
- 2m

31,000 cells , 125,000 cells 750,000 cells

7,500 cells

- 20m 🗶 7,500 cells
- 10m 🗶 31,000 cells
- 5m 🗶 125,000 cells
- 2m 🗸 750,000 cells
- 1m 🗸 3,100,000 cells
- 0.5m 🗸 12,500,000 cells

CPU = 17-5960X CPU @3.00GHz GPU = 2 x GeForce GTX 980

CPU = 17-5960X CPU @3.00GHz GPU = 2 x GeForce GTX 980

Study Outcomes and Presentation Summary

Study Outcomes

- Physical review of infrastructure condition
- Infrastructure capacity modelling (current and future climate)
- Priority infrastructure upgrade tables

General Modelling Summary

- Urban modelling is now more efficient thanks to HPC and GPU hardware
- Accurate representation of the physical urban drainage processes
- Cell size selection is an important consideration for result accuracy and realistic simulation run time

Study Outcomes and Presentation Summary

Study Outcomes

- Physical review of infrastructure condition
- Infrastructure capacity modelling (current and future climate)
- Priority infrastructure upgrade tables

General Modelling Summary

- Urban modelling is now more efficient thanks to HPC and GPU hardware
- Accurate representation of the physical urban drainage processes
- Cell size selection is an important consideration for result accuracy and realistic simulation run time

D	Pipe Centroid					Current Climate AEP Flow (m						Future Cli	mate AEP F	nate AEP Flow (m*/s)		Upgrade Required	
	Easting	Northing	Current Size	Capacity	Capacity	63%	18%	10%			63%	18%	10%		1%	Current Climate	Future Climate
Upstream of Outlet	A10468_A1066	A															
A1367A_A1325	396,760.17	8,061,805.99	1 x 0.9m x 0.31m	<63%	18%	0.17	0.23	0.23	0.24	0.24	0.21	0.23	0.23	0.23	0.23	2xФ0.9m	2xΦ0.9m
A1325B_B482B	396,764.16	8,061,772.03	1 x 0.95m x 0.31m	<63%	18%	0.15	0.23	0.23	0.24	0.24	0.20	0.20	0.20	0.20	0.20	2xФ0.95m	2xФ0.95m
A1368A_B477C	397,150.09	8,062,378.54	1 x 0.91m x 0.3m	<63%	18%	0.17	0.23	0.23	0.23	0.23	0.18	0.23	0.23	0.23	0.23	2xФ0.91m	2xΦ0.91m
B477A_A1126B	397,159.98	8,062,373.69	1 x 0.6m x 0.35m	<63%	18%	0.24	0.28	0.26	0.26	0.28	0.25	0.25	0.25	0.25	0.25	2xФ0.6m	2xΦ0.6m
A1111A_A1128	397,165.97	8,062,361.51	1 x 0.6m x 0.3m	<63%	18%	0.15	0.20	0.20	0.20	0.20	0.17	0.17	0.17	0.17	0.17	2xФ0.6m	2xΦ0.6m
A1075A_A1012	397,171.53	8,062,347.96	3 x Φ0.475m	<63%	18%	0.37	0.39	0.39	0.40	0.41	0.38	0.38	0.38	0.38	0.38		
A1012_A1064A	397,184.84	8,062,342.12	1 x Φ0.475m	2%-1%	18%	0.20	0.22	0.23	0.70	0.70	0.21	0.21	0.21	0.21	0.21		-
A1046B_A1066	397,198.69	8,062,345.15	1 x Φ0.375m	<63%	18%	0.09	0.11	0.11	0.13	0.13	0.09	0.09	0.09	0.09	0.09	2xΦ0.375m	2x00.375m
A1010A_A1012	397,208.88	8,062,345.16	2 x Φ0.375m	<63%	18%	0.10	0.12	0.12	0.12	0.12	0.10	0.10	0.10	0.10	0.10	1.1.1	
A1075D_A1078	396,793.05	8,062,952.78	3 x Φ0.475m	2%-1%	18%	0.37	0.42	0.43	0.54	0.54	0.38	0.38	0.38	0.38	0.38		1.1
B482A_B476B	396,316.18	8,062,260.01	1 x 0.955m x 0.31m	<63%	18%	0.16	0.23	0.23	0.24	0.24	0.20	0.20	0.20	0.20	0.20	2xΦ0.955m	2x00.955m
B476A_B477B	396,032.20	8,062,194.79	1 x 0.955m x 0.31m	<63%	18%	0.16	0.23	0.23	0.24	0.24	0.20	0.20	0.20	0.20	0.20	2xΦ0.955m	2x00.955m
A1126A_A1127	396,757.48	8,061,892.79	1 x 0.62m x 0.52m	<63%	18%	0.29	0.30	0.30	0.30	0.30	0.29	0.29	0.29	0.29	0.29	2xΦ0.62m	2xΦ0.62m
A1098A_A1127	396,499.34	8,062,472.37	1 x 0.6m x 0.32m	<83%	18%	0.05	0.06	0.08	0.07	0.07	0.08	0.06	0.06	0.06	0.06	2xΦ0.6m	2xΦ0.6m
A1127_A1076C	396,405.83	8,062,415.60	1 x 0.62m x 0.3m	63%-18%	18%	0.32	0.32	0.33	0.33	0.33	0.32	0.32	0.32	0.32	0.32		1xΦ0.75m
Upstream of Outlet	t A1208A_B957A														-		
A1188A_A1188	396,407.80	8,062,365.81	1 x 0.9m x 0.425m	63%-18%	18%	0.18	0.28	0.29	0.29	0.29	0.21	0.30	0.30	0.30	0.30		
A1188AA_A120	390,409.03	8,062,359.64	1 x Φ0.425m	2%-1%	18%	0.18	0.28	0.29	0.30	0.30	0.21	0.30	0.30	0.30	0.30	-	-
A1208A_B957A	396,533.86	8,062,282.74	1 x Φ0.425m	>1%	18%	0.21	0.33	0.34	0.39	0.42	0.25	0.35	0.38	0.42	0.43		
Unknown02	396,559.71	8,062,309.18	1 x Φ0.375m	2%-1%	18%	0.09	0.14	0.15	0.16	0.16	0.11	0.16	0.16	0.16	0.16	-	-
B766A_B401C	396,559.64	8,062,309.35	1 x Φ0.75m	>1%	18%	0.07	0.12	0.13	0.16	0.17	0.09	0.15	0.16	0.19	0.21	-	
B401A_B387B	396,431.95	8,062,282.05	1 x Φ0.75m	>1%	18%	0.07	0.12	0.13	0.16	0.17	0.09	0.15	0.16	0.19	0.21		
B387A_A1218B	396,756.55	8,061,943.10	1 x Φ0.75m	>1%	18%	0.08	0.14	0.15	0.19	0.21	0.10	0.17	0.19	0.23	0.25		
A1218A_B787A	397,224.60	8,062,106.59	1 x Φ0.75m	>1%	18%	0.08	0.14	0.15	0.19	0.21	0.10	0.17	0.19	0.23	0.25		
B400A_B387C	397,224.78	8,062,098.51	2 x Φ0.375m	>1%	18%	0.02	0.03	0.03	0.03	0.04	0.02	0.03	0.03	0.04	0.04		
Upstream of Outlet	A1220_A1213																
B803A_B792A	396,746.33	8,061,940.83	1 x Φ0.3m	<63%	18%	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	1xΦ0.525m	1x00.525m
B791A_B792B	397,229.75	8,062,075.04	1 x 0.4m x 0.2m	>1%	18%	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.02	0.02		
B792A_A1219	397,319.81	8,062,246.08	1 x Φ0.45m	>1%	18%	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	2xΦ0.45m	2xΦ0.45m
A1220_A1213	397,290.01	8,062,285.36	1 x Φ 0.6m	>1%	18%	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21	2xΦ0.6m	2xΦ0.6m
B823_A1264B	397,242.80	8,062,302.38	1 x Φ0.3m	>1%	18%	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	-	-
A1264A_A1269	397,242.31	8,062,303.36	1 x Φ0.3m	>1%	18%	0.01	0.02	0.02	0.03	0.03	0.02	0.03	0.03	0.03	0.04		
A1209_A1259B	397,229.49	8,062,308.63	1 x Φ0.3m	<63%	18%	0.01	0.02	0.02	0.03	0.03	0.02	0.03	0.03	0.03	0.04	1xΦ0.45m	1xΦ0.45m
A1259A_A1258	397,190.19	8,062,294.45	1 x Φ0.3m	2%-1%	18%	0.01	0.02	0.02	0.03	0.03	0.02	0.03	0.03	0.03	0.04		
A1258A_A1232	397,212.29	8,062,303.05	1 x 0.6m x 0.2m	63%-18%	18%	0.02	0.13	0.13	0.13	0.13	0.05	0.08	0.08	0.08	0.08	1xΦ0.75m	1xΦ0.75m
A1255A_A1232	397,235.46	8,062,349.82	1 x 0.6m x 0.2m	63%-18%	18%	0.20	0.20	0.21	0.21	0.21	0.24	0.24	0.24	0.24	0.24	1xΦ0.75m	1xΦ0.75m
A1232_A1231	397,228.22	8,062,347.61	1 x Φ0.425m	63%-18%	18%	0.21	0.28	0.28	0.28	0.28	0.29	0.29	0.29	0.29	0.29	2xΦ0.425m	2xΦ0.425m
B1432bb	397,215.89	8,062,344.65	1 x Φ0.3m	>1%	18%	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	-	
B477A_A1126B	397,159.98	8,062,373.69	1 x 0.6m x 0.35m	<63%	18%	0.24	0.26	0.26	0.26	0.28	0.25	0.25	0.25	0.25	0.25	2xФ0.6m	2xΦ0.6m
A1111A_A1128	397,165.97	8,062,361.51	1 x 0.6m x 0.3m	<83%	18%	0.15	0.20	0.20	0.20	0.20	0.17	0.17	0.17	0.17	0.17	2xФ0.6m	2xΦ0.6m
A1075A_A1012	397,171.53	8,062,347.96	3 x Φ0.475m	<83%	18%	0.37	0.39	0.39	0.40	0.41	0.38	0.38	0.38	0.38	0.38	1.1	
A1012_A1064A	397,184.84	8,062,342.12	1 x Φ0.475m	2%-1%	18%	0.20	0.22	0.23	0.70	0.70	0.21	0.21	0.21	0.21	0.21		
A1046B_A1066	397,198.69	8,062,345.15	1 x Φ0.375m	<63%	18%	0.09	0.11	0.11	0.13	0.13	0.09	0.09	90.0	0.09	0.09	2xΦ0.375m	2xΦ0.375m
A1010A_A1012	397,208.88	8,062,345.16	2 x Φ0.375m	<63%	18%	0.10	0.12	0.12	0.12	0.12	0.10	0.10	0.10	0.10	0.10		
A1075D_A1076	396,793.05	8,062,952.78	3 x Φ0.475m	2%-1%	18%	0.37	0.42	0.43	0.54	0.54	0.38	0.38	0.38	0.38	0.38		-
B482A_B476B	396,316.18	8,062,260.01	1 x 0.955m x 0.31m	<63%	18%	0.16	0.23	0.23	0.24	0.24	0.20	0.20	0.20	0.20	0.20	2xФ0.955m	2xΦ0.955m
B476A_B477B	396,032.20	8,062,194.79	1 x 0.955m x 0.31m	<63%	18%	0.16	0.23	0.23	0.24	0.24	0.20	0.20	0.20	0.20	0.20	2xΦ0.955m	2xΦ0.955m
A1128A A1127						-										-	
	396,757.48	8,061,892.79	1 x 0.62m x 0.52m	<83%	18%	0.29	0.30	0.30	0.30	0.30	0.29	0.29	0.29	0.29	0.29	2xΦ0.62m	2xΦ0.62m

