



# **TUFLOW HPC**

2018 TUFLOW UK Conference, Bristol

Bill Syme

### **TUFLOW HPC Presentation Overview**

#### Background

#### Benchmarking

- Physical Processes
- Solution Accuracy
- Mesh Convergence
- Benchmarking
- **Time-stepping and Stability**
- 1D/2D Linking and HPC vs Classic
- HPC vs old GPU Solver

#### Hardware





# TUFLOW HPC Why?

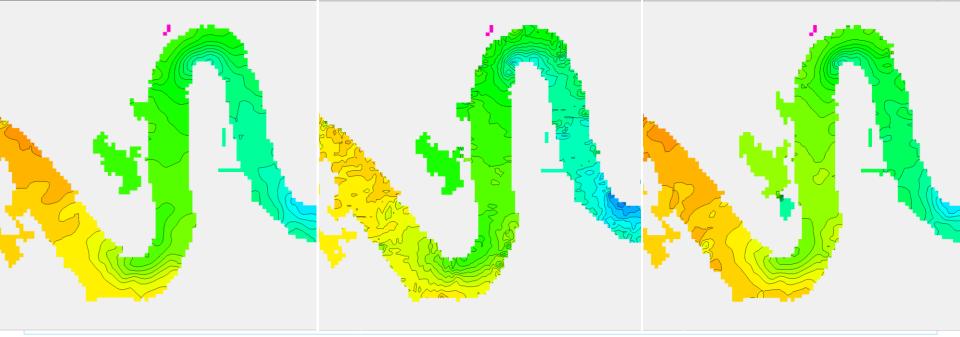
#### Accuracy Issues with TUFLOW GPU

#### **TUFLOW GPU**

- Simplistic 1<sup>st</sup> order spatial solution
- Intended for broad-scale, rapid assessment
- BUT, was increasingly being used beyond our comfort zone

#### **Objective: parallelised scheme of similar performance to Classic**






### **TUFLOW GPU** Issue 1: Numerical "Noise"

Classic

#### **Original GPU Scheme**

#### **TUFLOW HPC**







### **TUFLOW GPU** Issue 2: Checkerboarding







### TUFLOW HPC Overview

#### **TUFLOW GPU Mark II**

- New 2<sup>nd</sup> Order spatial solution
- Schematisation now supports cell side elevations and n values (i.e. thin breaklines)

#### Nearly all of TUFLOW Classic's functionality

• Aiming to include all, or nearly all

#### All 1D/2D linking functionality (HX and SX)

• Linked to all 1D (ESTRY) functionality and currently being linked to external 1D schemes

#### Runs on Nvidia GPU devices and CPUs

Very fast on GPU





### **TUFLOW HPC** Solution Scheme

#### Explicit, Finite Volume, TVD shock capturing solution

#### 4th order in time, Runge-Kutta integration solution

• 1st and 2nd order time integrators soft timestep convergence (i.e. different results if you change the timestepping)

#### 2nd order in space

• 1st order in space available

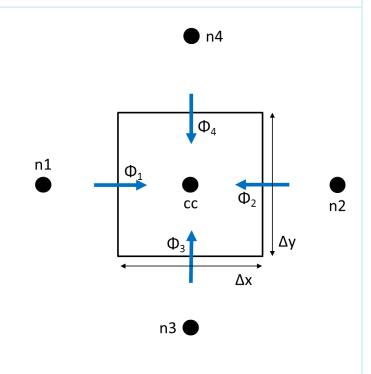
#### Includes three sub-grid turbulence (eddy viscosity) approaches

• Smagorinsky, Prandtl, Constant

#### Much improved solution over original TUFLOW GPU solver



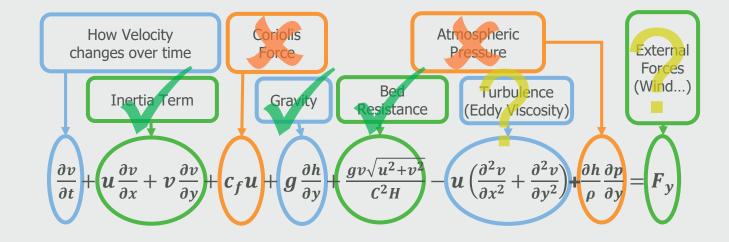



### **TUFLOW HPC** Cell Discretisation

#### Same as Classic's discretisation

- Water levels cell centres
- Velocities cell mid-sides (allows elevations at cell mid-sides, i.e. thin breaklines)

# Trialled other approaches for calculating velocities


- Cell centres (TUFLOW GPU approach)
- Cell corners







# Mathematical Solutions What Physical Processes Matter for Flooding?

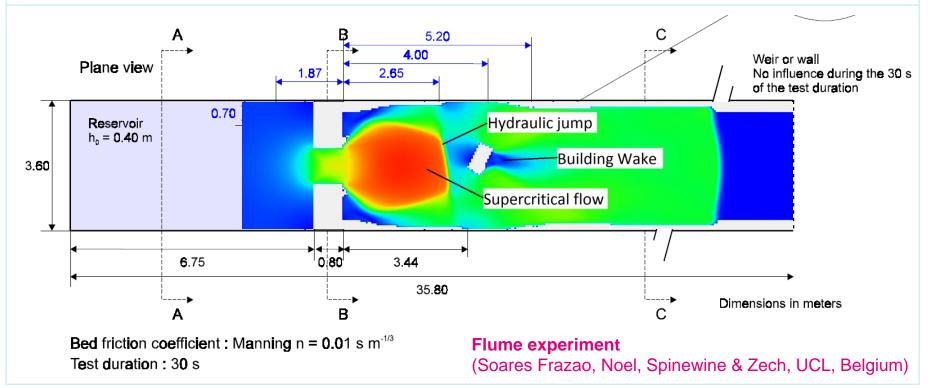






# Modelling Turbulent (Eddy) Viscosity

- Turbulence contributes to viscosity (Eddy viscosity is the 2D SWE representation of sub-grid scale turbulence)
- 1<sup>st</sup> order schemes numerically dispersive distorts turbulence model
- 3D CFD (Navier-Stokes) has many turbulence models
- TUFLOW Classic models traditionally use Smagorinsky + Constant

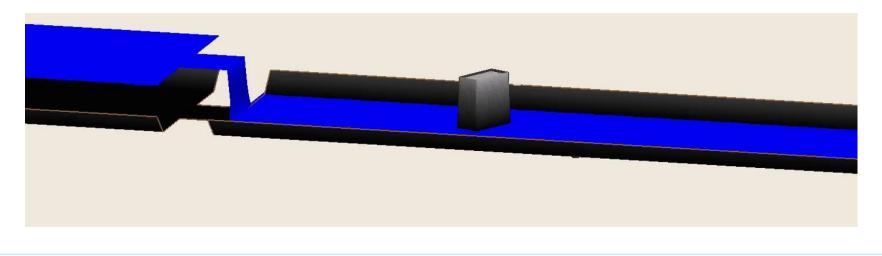

$$v_T = mA \left[ \left( \frac{\partial u}{\partial x} \right)^2 + \left( \frac{\partial v}{\partial y} \right)^2 + \frac{1}{2} \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2 \right]^{\frac{1}{2}} + c$$

• Is a turbulence 'model' needed?





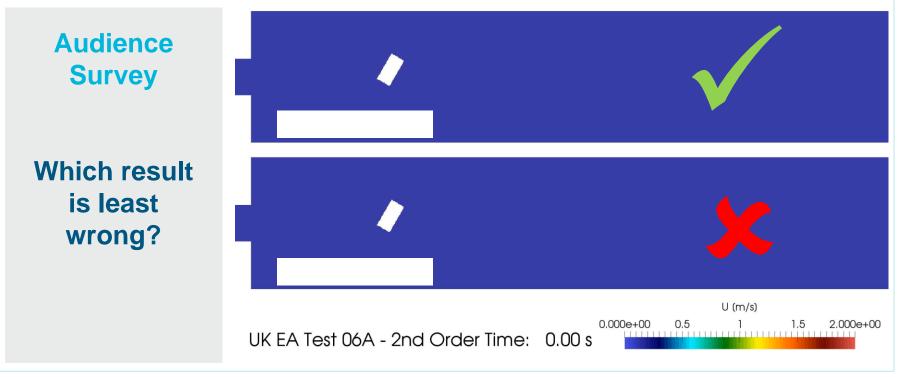
### Benchmarking TUFLOW HPC Test Case 6A – UK EA







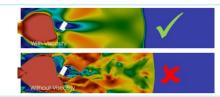

# Benchmarking Physical Processes Test Case 6A – UK EA 2D Benchmarking


- Hydraulic jump forms in front of building
- Eddy shedding downstream of building
- Jump propagates upstream as flow eases








# Benchmarking Physical Processes Test Case 6A – UK EA 2D Benchmarking

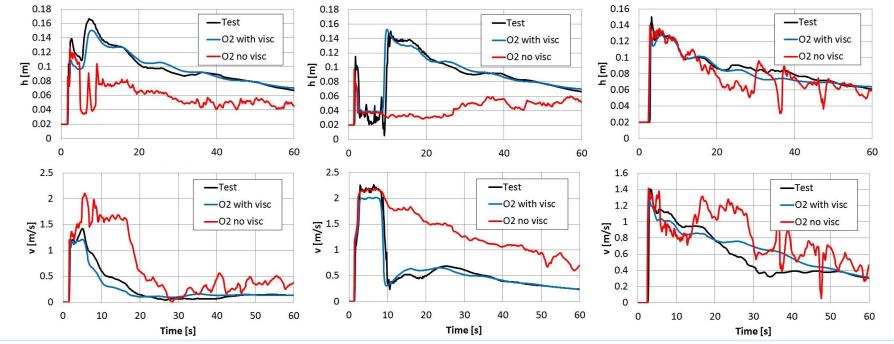






### Benchmarking Test Case 6A

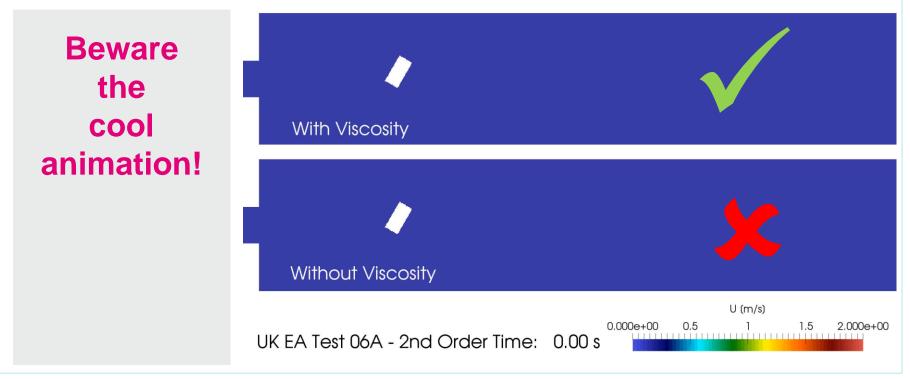



#### With turbulence (eddy viscosity)

Without turbulence (eddy viscosity)

#### **Location 1**

#### **Location 2**


#### **Location 3**

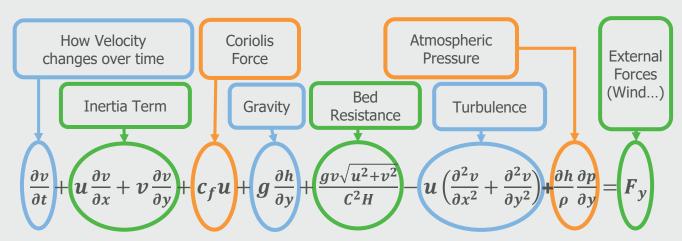






# Benchmarking Physical Processes Test Case 6A – UK EA 2D Benchmarking








# Mathematical Solution Solving the Equations!!!



#### Momentum



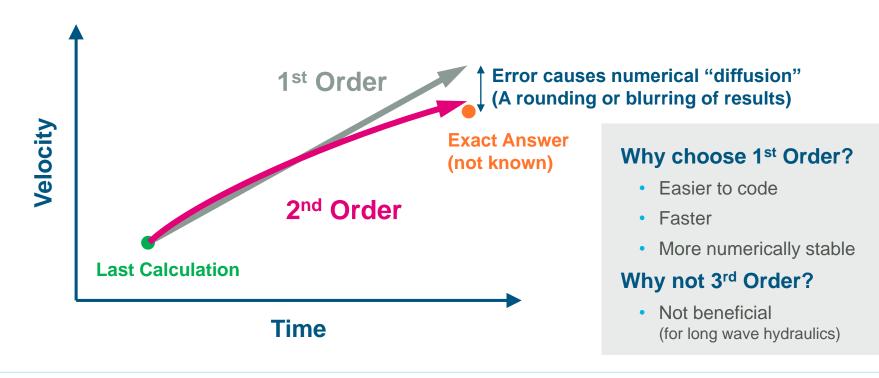
Can solve using different orders of approximation (e.g. 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup>, ... order)





### Mathematical Solution What is 1<sup>st</sup> Order, 2<sup>nd</sup> Order?

In engineering, **orders of approximation** refer to how precise an approximation is...


... in increasing order of precision, a **zeroth-order** approximation, a **first-order** approximation, a **second-order** approximation, and so forth.

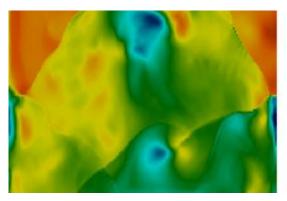
https://en.wikipedia.org/wiki/Order\_of\_approximation

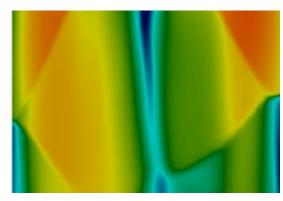




### Mathematical Solution What is 1<sup>st</sup> Order, 2<sup>nd</sup> Order?






# Mathematical Solution Does 1<sup>st</sup> Order, 2<sup>nd</sup> Order Matter?

#### 1<sup>st</sup> Order

- Can exhibit numerical diffusion (smoothing) causing unnatural energy losses in complex flows
- Distorts turbulence term





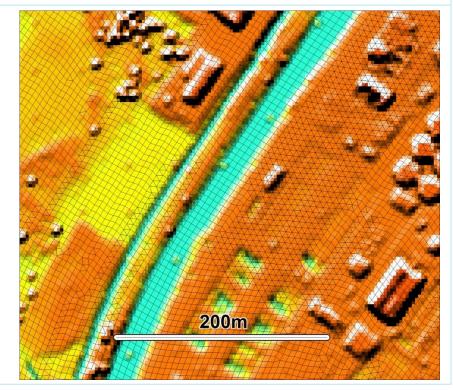


1<sup>st</sup> Order (no turbulence term)








# 2011 Japanese Tsunami TUFLOW FV

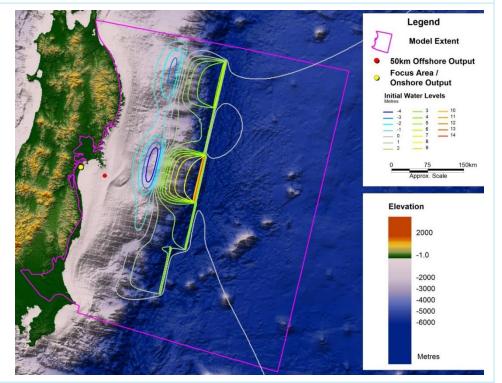
#### **Model Area**

- 300,000 km2
- Five meshes (coarse to fine)
- 0.5 to 1.0 million elements

#### **Mesh Element Sizes**

- 10 km off-shore
- 250 to 1,000 m Tsunami Zone to shore
- 5 to 250 m near shore



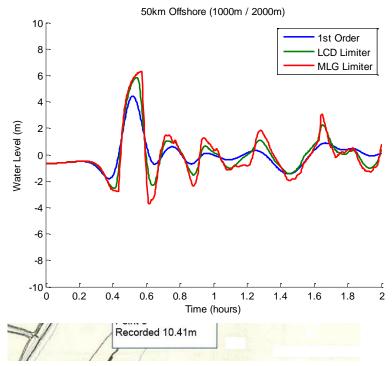





# **2011 Japanese Tsunami** Initial Water Levels

#### **Initial Water Surface Disturbance**

- Leading depression of -4.7 m
- Peak crest height of 15.7 m








### **2011 Japanese Tsunami** Model Calibration – 2<sup>nd</sup> Order Solution Essential

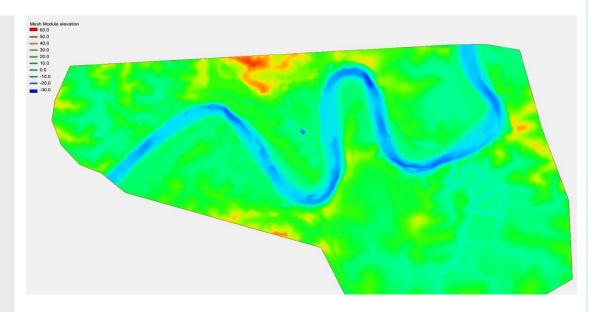

| Mesh<br>Resolution | Location 5, Recorded = 10.41 m |                                      |                                      | Location 4, Recorded = 12.86 m |                                      |                                      |  |
|--------------------|--------------------------------|--------------------------------------|--------------------------------------|--------------------------------|--------------------------------------|--------------------------------------|--|
|                    | 1 <sup>st</sup> Order          | 2 <sup>nd</sup> Order<br>LCD Limiter | 2 <sup>nd</sup> Order<br>MLG Limiter | 1 <sup>st</sup> Order          | 2 <sup>nd</sup> Order<br>LCD Limiter | 2 <sup>nd</sup> Order<br>MLG Limiter |  |
| 1 (Finest)         | 8.24                           | 10.46                                | 10.75                                | 8.38                           | 10.55                                | 10.7                                 |  |
| 2                  | 8.24                           | 10.40                                | 10.71                                | 8.41                           | 10.48                                | 10.68                                |  |
| 3                  | 7.68                           | 10.20                                | 10.60                                | 7.70                           | 10.12                                | 10.57                                |  |
| 4                  | 7.53                           | 10.13                                | 10.59                                | 7.53                           | 10.10                                | 10.54                                |  |
| 5 (Coarsest)       | 6.40                           | 9.73                                 | 10.47                                | 6.72                           | 9.67                                 | 10.48                                |  |
| Mesh<br>Resolution | Location 3, Recorded = 12.40 m |                                      |                                      | Location 2 Recorded = 11.38 m  |                                      |                                      |  |
|                    | 1 <sup>st</sup> Order          | 2 <sup>nd</sup> Order<br>LCD Limiter | 2 <sup>nd</sup> Order<br>MLG Limiter | 1 <sup>st</sup> Order          | 2 <sup>nd</sup> Order<br>LCD Limiter | 2 <sup>nd</sup> Order<br>MLG Limiter |  |
| 1 (Finest)         | 8.42                           | 10.57                                | 11.37                                | 8.98                           | 11.32                                | 11.66                                |  |
| 2                  | 8.43                           | 10.50                                | 11.37                                | 9.03                           | 11.25                                | 11.6                                 |  |
| 3                  | 7.86                           | 10.28                                | 11.52                                | 8.38                           | 11.00                                | 11.87                                |  |
| 4                  | 7.74                           | 10.23                                | 11.41                                | 8.25                           | 10.93                                | 11.75                                |  |
| 5 (Coarsest)       | 6.90                           | 9.84                                 | 11.15                                | 7.14                           | 10.65                                | 12.02                                |  |







### 2011 Japanese Tsunami TUFLOW FV 1<sup>st</sup> Order vs 2<sup>nd</sup> Order








# **Real River** Section of the Brisbane River

- D/S water level 2.7m
- U/S Q = 9,000 m<sup>3</sup>/s
- Smagorinsky M=0.5 C=0.05
- Steady flow model
- Peak of calibrated flow event
- Undulating bathymetry
- 20 to 30 m deep
- $V_{av}$  3 to 4 m/s









### Mathematical Solution Does 1<sup>st</sup> Order, 2<sup>nd</sup> Order Matter?

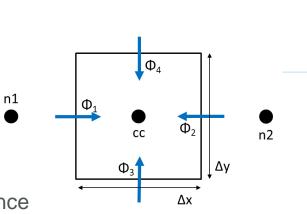
 1<sup>st</sup> Order typically generates more Mesh Module Delta water level HPC 1st - 2nd energy losses and steeper water level gradients ~1.5 m higher in this case Yes, it can matter 1<sup>st</sup> order ideally tested against 2<sup>nd</sup> order

#### Well calibrated model





### **TUFLOW HPC** Timestep Convergence


- TUFLOW HPC uses 4<sup>th</sup> order Runge-Kutta integrator
- Known to quickly transition to well converged
- Non-dimensional numbers must be below limits:





### Adaptive Timestepping HPC Control Numbers

- Courant number (Nu < 1.0)
- Shallow wave celerity number (Nc < 1.0)</li>
- Diffusion (turbulence) number (Nd < 0.3)
- Explicit solution: all three at or below limits for convergence
- Δt adjusted every timestep to meet above conditions
- Δt estimated from previous timestep results
- Therefore, Δt can be too large
- So, have built in a repeat timestep feature (next slide)



n4

$$\begin{split} N_u &= \max\left(\frac{|u|\Delta t}{\Delta x}, \frac{|v|\Delta t}{\Delta y}\right) \leq 1.0\\ N_c &= \max\left(\frac{\sqrt{gh}\Delta t}{\Delta x}, \frac{\sqrt{gh}\Delta t}{\Delta y}\right) \leq 1.0\\ N_d &= \max\left(\frac{\nu_T \Delta t}{\Delta x^2}, \frac{\nu_T \Delta t}{\Delta y^2}\right) \leq 0.3 \end{split}$$

n3 (





### **TUFLOW HPC** Stability

#### Timestepping

- Adaptive (default) very stable
- Can run fixed timestep if control number limits exceeded, solution likely to go unstable
- Nu, Nc, Nd limits may be factored down by user (e.g. Control Number Factor == 0.8)

#### **Repeat Step Feature**

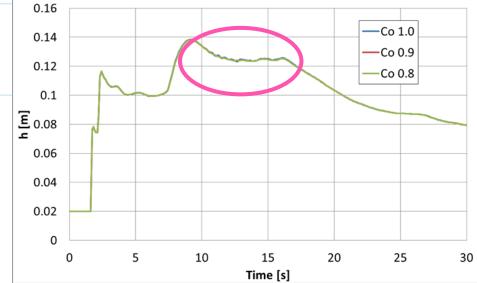
- Model state at end of step is evaluated
  - If NaNs encountered, or control numbers' limits exceeded by more than 20%, step is rejected, timestep is reduced, and step is repeated
- Model fails at 10 consecutive failed repeat step attempts exceptionally rare!
- Model state at start of each step is retained
- Repeated step messages reported in .hpc.tlf file (and on console window)





# Adaptive Timestepping HPC Control Numbers

Default limits: Nu = 1.0; Nc = 1.0; Nd = 0.3


#### Can underclock or overclock using "Control Number Factor =="

• Use with caution if overclocking!

#### May underclock where:

- Numerous repeated timesteps
- Any "noise" in maximum surfaces
- If timestepping likely to change for "What if?" scenarios
- Like to be conservative!

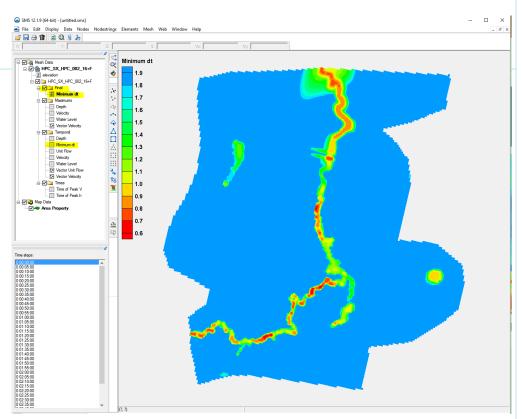
#### Underclocking by 20% increases runtimes by 20%



$$\begin{split} N_u &= \max\left(\frac{|u|\Delta t}{\Delta x}, \frac{|v|\Delta t}{\Delta y}\right) \leq 1.0\\ N_c &= \max\left(\frac{\sqrt{gh}\Delta t}{\Delta x}, \frac{\sqrt{gh}\Delta t}{\Delta y}\right) \leq 1.0 \end{split}$$

$$N_d = \max\left(\frac{\nu_T \Delta t}{\Delta x^2}, \frac{\nu_T \Delta t}{\Delta y^2}\right) \le 0.3$$




### Minimum dt Timestep Map Output

Outputs the limiting  $\Delta t$  for each cell

# Identifies where in the model is controlling the timestep

#### Highlight poor or inaccurate data

- Erroneous elevations creating very deep cells
- A cliff in the model from a breakline with wrong values
- Incorrect, and very slippery Manning's n value







### Classic vs HPC Beware of the Stability!

#### Classic

- Can go unstable (as we all know!)
- Due to divergence of solution (i.e. matrix solution not converging)
- Instabilities highlight bad data or poor model setup
- Forces the modeller to make good models

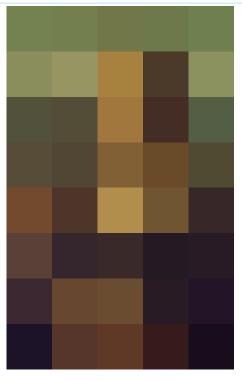
#### HPC

- VERY stable (an instability is very rare!), and zero mass error, BUT
- May hide poor data or poor model set up
- Tracked maximums may pick up a slight bounce (that's not deemed to be an instability)
- Tools provided to help quality control models
- Be thorough in reviewing results





# HPC Timestepping Good Indicator of a "Healthy" Model


- Good indicator of model quality/health
- Timestepping that changes steadily is good!

#### **Causes of poor timestepping and repeat timesteps**

- Rainfall (RF) histogram boundaries (this is OK)
- Poor or erroneous data
- Poor boundary setup (e.g. QT line not perpendicular to flow)
- Cell size too coarse for main waterways
- Insufficient SX cells linked to 1D structure
- And so on...
- Same culprits as for Classic, but HPC will most likely remain "stable"!!! BEWARE





















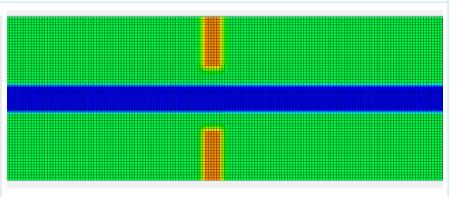









# **Mesh Size Convergence**


- IT SHOULD!
- Confidence in code and model
- Can assist with model calibration
- Helps with understanding model accuracy
- Watch out for Picasso solutions...

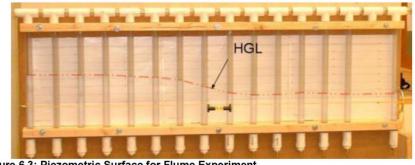


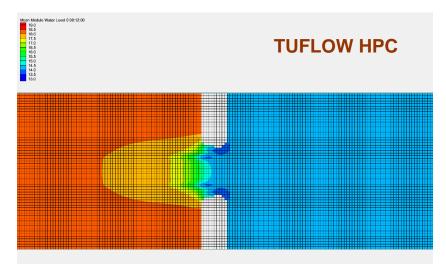


# Kansas Uni Bridge Flume Test

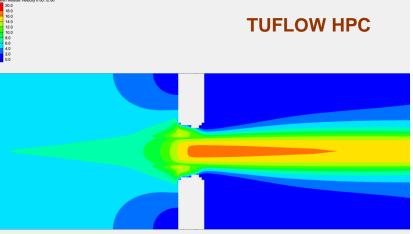
- Engineered river channel
- Highway embankment and bridge piers
- Deal. Evan Christopher. "A Comparison Study of One- and Two-Dimensional Hydraulic Models for River Environments". University of Kansas Thesis, 2017 https://kuscholarworks.ku.edu/handle/1808/23919







Figure 6.3: Piezometric Surface for Flume Experiment





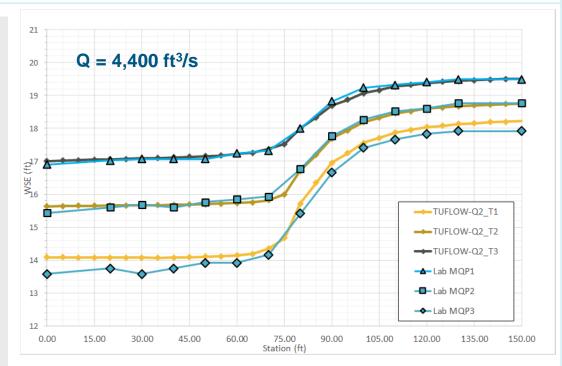

### Kansas Uni Bridge Flume Test TUFLOW HPC Results

#### Surface elevation (ft)







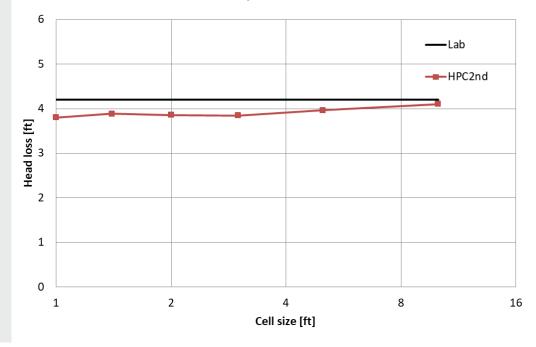

sth Module Velocity 0 00:12:00





# Kansas Uni Bridge Flume Test TUFLOW HPC Results

- 2<sup>nd</sup> Order HPC solution
- Mannings n = 0.0233
- Bridge pier (K<sub>p</sub>) losses as derived from Hydraulics of Bridge Waterways
- Default eddy viscosity parameters



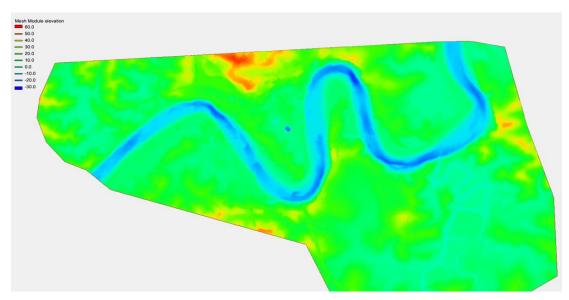





## Kansas Uni Bridge Flume Test HPC Mesh Convergence Tests

- Head loss vs cell size for low tailwater case
- In this case, little variation for 2<sup>nd</sup> order solution




#### Q 4400cfs, 14ft tailwater





## **Brisbane River** Benchmark Model

- D/S water level 2.7m
- U/S Q = 9,000 m3/s
- Smagorinsky M=0.5 C=0.05 (Default values)
- Steady flow model
- Peak of calibrated flow event
- Undulating bathymetry
- 20 to 30 m deep
- V<sub>av</sub> 3 to 4 m/s







### Mesh Size Convergence Does it Matter?

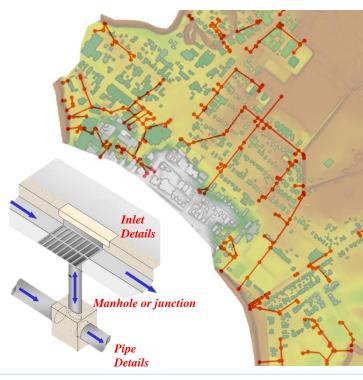
#### **Brisbane River Sensitivity Test**

- Run for different mesh resolutions, different timesteps
- Ascertain any dependencies
- Are these of importance?
- 1<sup>st</sup> order solution tends to show poorer convergence

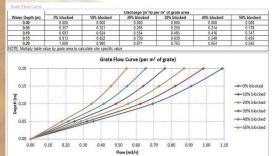
Researching turbulence (eddy viscosity) representation where cell size << depth

Yes, it can matter









### Case Study – Surfacewater Modelling Innisfail 1D Stormwater Network / 2D Overland

- Inlets
- Manholes or junctions
- Stormwater pipes
- Gates, Spillways, Weirs, Backflow control devices
- Linked to 2D overland

"Road Crossfall" option to improve flow capture at pits



#### Pit Inlet depth vs flow curves



#### Manhole Energy Loss Options:

Fixed = QUDM compatible

Engelund method (default)

- 1) Expansion / contraction of flow
- 2) Changes in pipe size

4)

- 3) Changes in angle at junctions
  - Change in elevation at junctions





# 2D Surfacewater Modelling – Innisfail How fine can/should(!) we go?

Accurate topography data What 2D model resolution... How fine for urban situations?

- 20m 7,500 cells
- **10m** 31,000 cells
- 5m 125,000 cells
- 2m 750,000 cells
- 1m 3,100,000 cells
- **0.5m** 12,500,000 cells



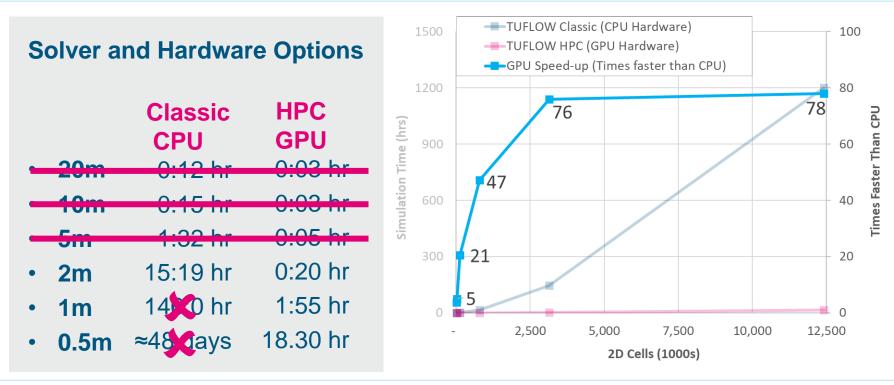




# 2D Surfacewater Modelling – Innisfail How fine can / should(!) we go?

Accurate topography data What 2D model resolution... How fine for urban situations?

- 20m 🗶 7,500 cells
- 10m 🗶 31,000 cells
- 5m 🗶 125,000 cells
- 2m 🗸 750,000 cells
- 1m 🗸 3,100,000 cells
- 0.5m 12,500,000 cells








### Surfacewater Modelling How fine can we go?

CPU = 17-5960X CPU @3.00GHz GPU = 2 x GeForce GTX 980







### **TUFLOW HPC** Boundaries

#### Supported boundaries/links

- HT, HQ, HX
- QT

(Note: A QT boundary invokes 1D linking, therefore, communication with CPU every timestep)

• RF (all forms), SA (all forms), SX

#### HQ boundary implementation the most different

- HPC applies slope on a cell-by-cell basis
- · Classic estimates flow across HQ line and applies same water level across all cells





## **TUFLOW HPC** 1D/2D Integration

#### Fully compatible with ESTRY (TUFLOW 1D)

- ESTRY now supports adaptive time-stepping to synchronise with HPC
- All 1D functionality available to HPC

#### **Integration with External 1D Schemes**

• Implemented or in progress (12D DDA, Flood Modeller 1D and XP-SWMM 1D)

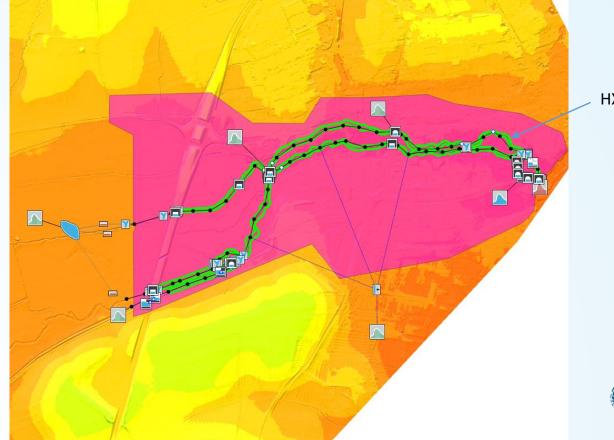
#### Supports all HX and SX links

• No need to change any inputs

#### **TUFLOW GPU's Virtual Pipes feature now supported**

- Can now have 1D pipe networks and virtual pipe pits in same model
- Build 2018-03-AA about to be released



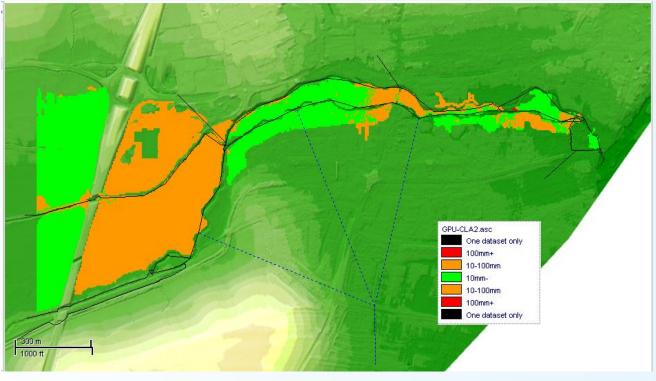





2








2

HX links







2





• Example run times with linked Flood Modeller 1D

|           | With TUFLOW Classic (on CPU) | With TUFLOW HPC on<br>CPU | With TUFLOW HPC on GPU |
|-----------|------------------------------|---------------------------|------------------------|
| Ock model | 137 mins                     | 150 mins                  | 32 mins                |

• Speed up

|           |     |     | With TUFLOW HPC on GPU |
|-----------|-----|-----|------------------------|
| Ock model | n/a | 0.9 | 4.3                    |

NVIDIA GeForce GTX 1080 – £500 gaming graphics card







# **Do I Need to Change my Classic Model?**

No (other than a couple of .tcf commands)

Can run 1D/2D Classic models using HPC 2D solver

Default for 2017 is to use Classic 2D solver

#### To run HPC 2D solver:

Solution Scheme == HPC ! Default is Classic

#### To run on GPU Device(s) :

```
Hardware == GPU ! Default is CPU
```

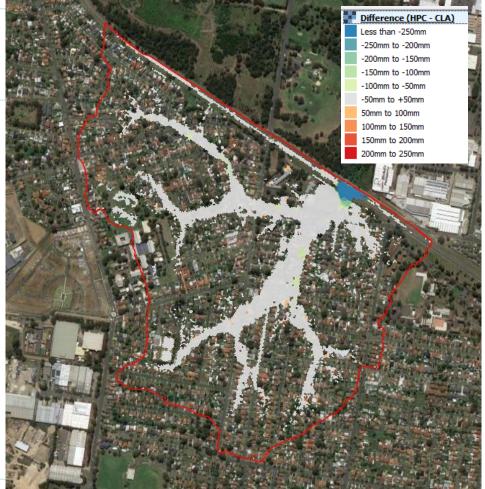
Note: HPC does not yet support all of Classic's functionality (discussed later)





## But, you may need to recalibrate

- All solution schemes produce different results
- Compare differences, if unacceptable or poorer calibration
  - Fine-tune parameters (e.g. Manning's n values; Form losses; Eddy viscosity)
- Can use Classic / HPC 2<sup>nd</sup> order to cross-check each other
- If starting, or just started, a new project, try HPC

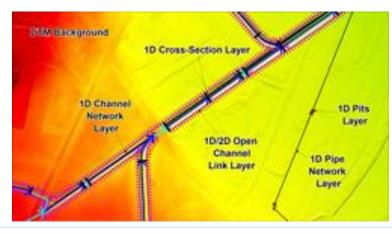





# **HPC vs Classic**

#### **Direct rainfall with pipe network**

- 200,000 2D cells
- 200 1D culverts
- 150 pits








# **HPC vs Classic**

- Throsby Newcastle, Urban drainage, discrete hydrology model
- Very high in channel velocities (>5m/s)
- Very tricky to model stability wise
- Great benchmark model!









# **HPC vs Old GPU Solver**

#### HPC supports cell mid-side features

- Thin breaklines (e.g. fences, levees)
- Sampling of Manning's n and materials at cell mid-sides
- Sampling of FLC and CWF at cell mid-sides

#### "GPU Solver == ON" invokes old TUFLOW GPU solver

- Make sure this command is replaced by commands below to run HPC
  - Solution Scheme == HPC
  - Hardware == GPU ! If you're using a GPU device

#### TUFLOW GPU provided, but engine will not be developed further

- No more new features for TUFLOW GPU
- Being provided for legacy reasons





### **TUFLOW HPC GPU Hardware**

#### How fast your model runs

Compute performance (Flops), CUDA cores, clock speed

#### How large can your model be

- Memory available in GPU
- Single or Double precision
- New features add more memory requirements!
  e.g. Tracking of time of maximums

#### **Multiple GPU support**

- Speed-up depends on model size, larger models scale better
- Pooled memory, allows running of large model
- NVIDIA DGX-1, 8 x Tesla V100 (5,120 cores each) USD\$149,000







## TUFLOW HPC Improved Multi-GPU Card Performance

8

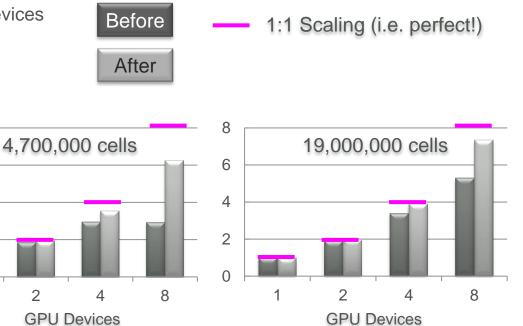
6

2

1

8

- Improved scaling across multiple GPU devices
- Larger models run more efficiently


300,000 cells

2

• Future development of cluster application

4

**GPU** Devices





8

6

2

0

Relative Speed



## **TUFLOW HPC** What it doesn't do... (yet)

- Traditional FCs (Read GIS FC ==)
- Multiple 2D Domains (Prioritising nested grid feature)
- Evacuation routes and other specialised outputs
- Reporting Locations underway
- Others...

Over the coming year aiming to include all/nearly all functionality





### TUFLOW HPC Conclusions

2<sup>nd</sup> order excellent mesh size and timestep convergence

Consistent comparisons with Classic models (on-going)

#### Performing strongly in wide range of applications

- Flume models with cell-sizes less than 1 cm
- Surface water applications
- · Large, deep, fast flowing river systems

#### Very strong uptake in the Australian market

• Now preferred over Classic

#### Papers and 2012 UK 2D Benchmark Tests

Visit <u>https://www.tuflow.com/Library.aspx</u>





## UK Advanced Training Courses Next Two Weeks, Leeds and London

### **Advanced TUFLOW HPC and IUD Training**

- 25 & 26 April (Leeds) places available
- 30 April & 1 May (London) places available, nearly full

### **Details <u>www.tuflow.com</u>** Training Page

- https://www.tuflow.com/Training.aspx?ubt
- Or email <u>training@tuflow.com</u>



