

where will our knowledge take you:

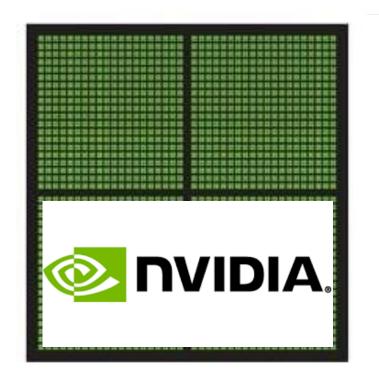
Flood Modelling Using GPU Hardware

12D Conference Brisbane, Australia Chris Huxley

Presentation Overview

- 1. What is GPU?
- 2. How does the new GPU solver compare to the existing CPU Solver?
- 3. Example Applications
 - High Resolution 1D/2D Urban Assessment
 - Whole of Catchment Modelling
 - Flood Forecasting

4. Questions


What is GPU?

What is GPU? Graphics Processing Unit

- Accelerated hardware development since 2000
- Parallel computing is used to achieve computation gains
- TUFLOW is NVIDIA GPU compatible (not AMD)
- We support multiple GPU cards
- 10 100 simulation speed up compared to CPU

Traditionally used for graphics visualisation Now used for scientific compute too

What is GPU? Graphics Processing Unit

Are all GPU cards equal?

https://wiki.tuflow.com

- Hardware benchmarking
- GPU modelling guidance

TUFLOW Set-up and use

TUFLOW

- How to install TUFLOW
- · How to configure a licence
- How to build a TUFLOW model (tutorials)
- How to run a TUFLOW model
- Free pre/post-processing utilities

TUFLOW Benchmarks

- TUFLOW Solution Accuracy Benchmarks
- Computer Hardware Speed Benchmarks
- Computer Hardware Speed Benchmarks New 2018 Release Version

Best Practice Guidance

- Webinar Recordings
- Other Useful Modelling Guidance

START

HERE

How does the GPU and **CPU** solvers compare?

TUFLOW HPC (GPU Module) Solution Scheme

Explicit, Finite Volume shock capturing solution

• Better suited to parallelisation than implicit schemes (Classic)

defaults

4th order in time, Runge-Kutta integration solution

2nd Order in space the default

• Same spatial order and cell design as Classic

Adaptive timestep design

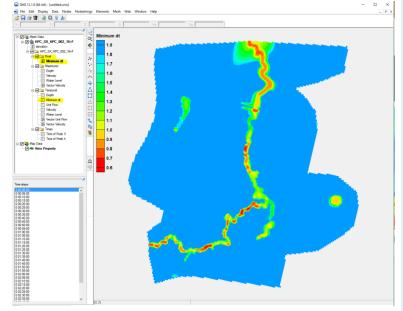
- Courant number
- Wave celerity number
- Diffusion number

Unconditional stability

Exceptionally stable >> user beware ☺

 $N_{u} = \max\left(\frac{|u|\Delta t}{\Delta x}, \frac{|v|\Delta t}{\Delta y}\right) \le 1.0$ $N_{c} = \max\left(\frac{\sqrt{gh}\Delta t}{\Delta x}, \frac{\sqrt{gh}\Delta t}{\Delta y}\right) \le 1.0$

$$N_d = \max\left(\frac{\nu_T \Delta t}{\Delta x^2}, \frac{\nu_T \Delta t}{\Delta y^2}\right) \le 0.3$$

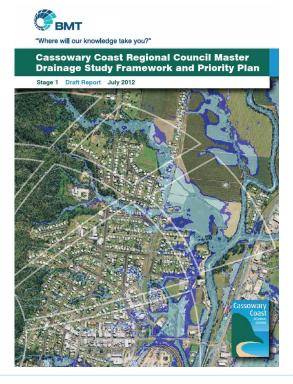

Classic vs HPC Beware of the stability!

Classic (CPU)

- Can go unstable (as we all know!) due to matrix solution not converging
- Instabilities highlight bad data / poor model setup and force the modeller to fix models

HPC (GPU)

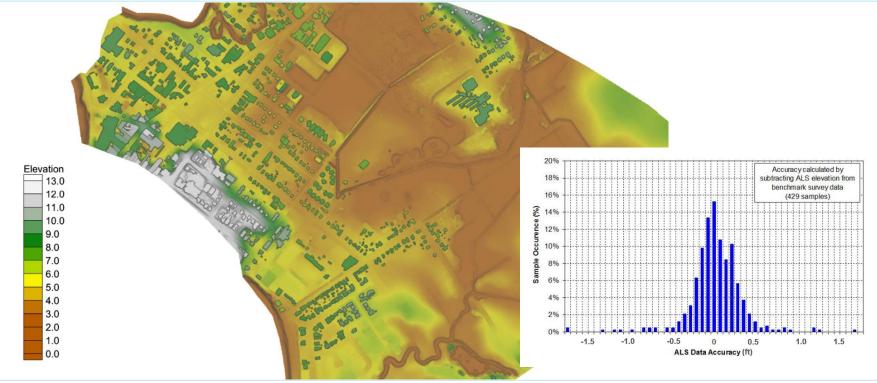
- VERY VERY stable and has zero mass error
- This may hide poor data or poor model set up (accidental boundary condition or topography errors)
- Use 'dt" output with check files to review location of minimum limiting timestep



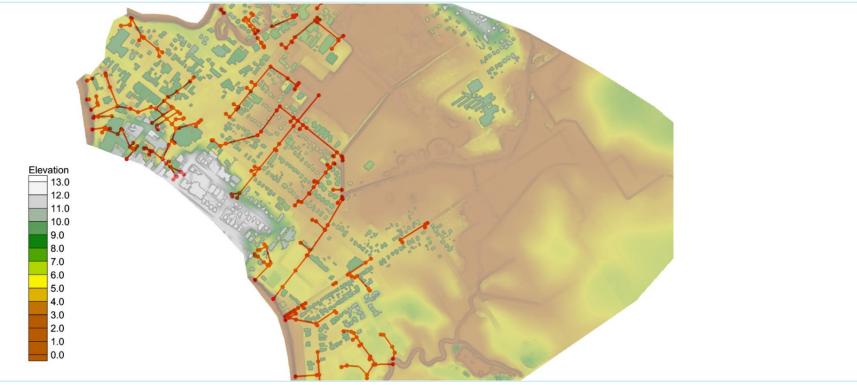
Example Applications

High Resolution 1D/2D Urban Assessment Council Master Drainage Study

Cassowary Coast REGIONAL COUNCIL



Cardwell Innisfail CBD Innisfail East Innisfail Estate **Mission Beach** Mourilyan Silkwood South Johnston Tullv Tully Heads / Hull Heads


High Resolution 1D/2D Urban Assessment Topography Data

High Resolution 1D/2D Urban Assessment Stormwater Pipe Network

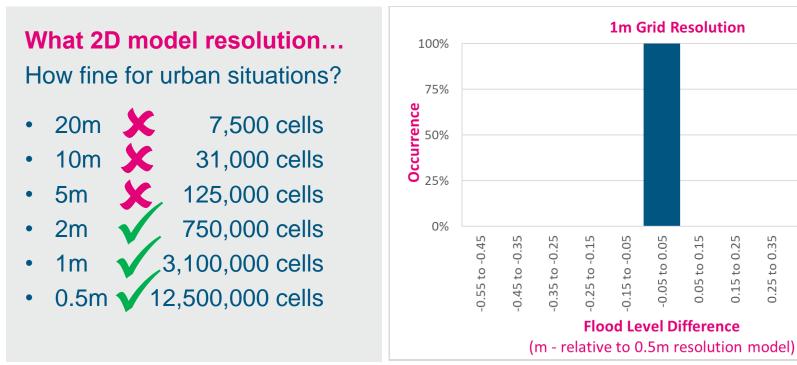
High Resolution 1D/2D Urban Assessment Landuse / Data

High Resolution 1D/2D Urban Assessment Direct Rainfall Approach

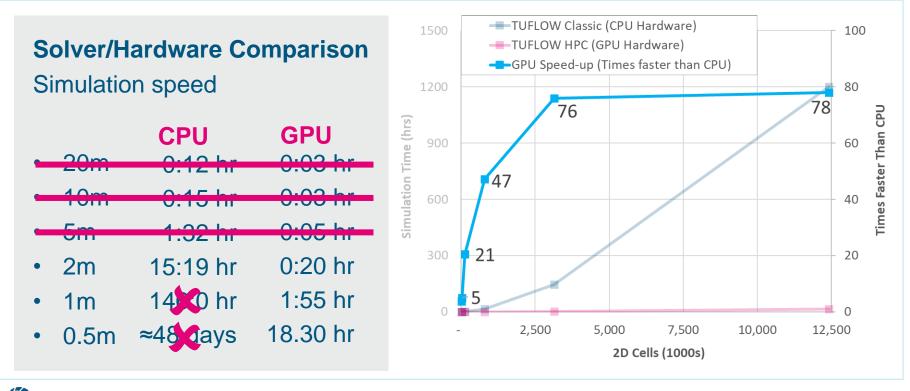
Inundation is mapped when depth exceeds 0.1m

High Resolution 1D/2D Urban Assessment What Matters?

What 2D model resolution... How fine for urban situations?


- 20m 7,500 cells
- 10m 31,000 cells
- 5m 125,000 cells
- 2m 750,000 cells
- 1m 3,100,000 cells
- 0.5m 12,500,000 cells

High Resolution 1D/2D Urban Assessment What Matters?



0.45 to 0.55

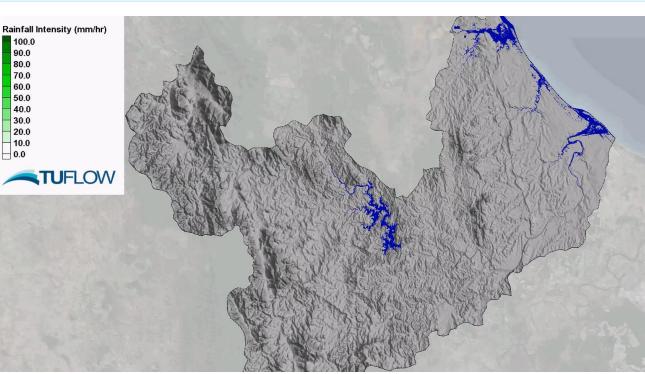
0.35 to 0.45

High Resolution 1D/2D Urban Assessment What Matters?

T CPU = 17-5960X CPU @3.00GHz GPU = 2 x

 $GPU = 2 \times GeForce GTX 980$

Bundaberg Non-Urban Overland Mapping Study Catchment Scale Modelling



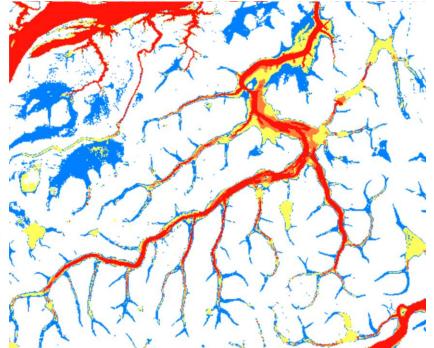
Bundaberg Non-Urban Overland Mapping Study Catchment Scale Modelling

- 7,000 km² area
- 15m cell size
- 6 durations
- 1% AEP existing
 + future climate

Duration	Percentage of area where critical
10min	1.4%
20min	29.17%
30min	2.15%
1hr	24.96%
2hr	11.48%
6hr	2.2%
12hr	6.92%
24hr	9.49%
48hr	3.47%
72hr	8.76%

Bundaberg Non-Urban Overland Mapping Study Catchment Scale Modelling

- 7,000 km² area
- 15m cell size
- 6 durations
- 1% AEP existing
 + future climate


Duration	Percentage of area where critical
10min	1.4%
20min	29.17%
30min	2.15%
1hr	24.96%
2hr	11.48%
6hr	2.2%
12hr	6.92%
24hr	9.49%
48hr	3.47%
72hr	8.76%

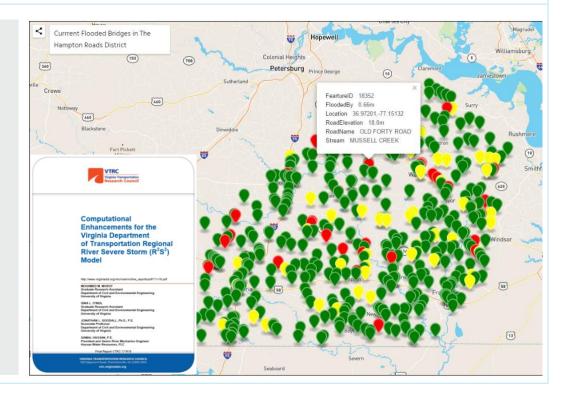
>30,000,000 2D cells

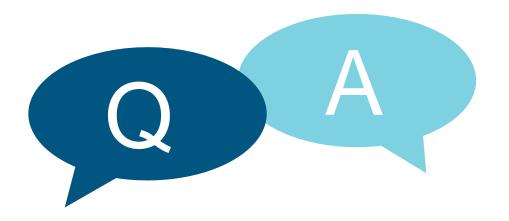
				0.9				1.8			2.4	2.8	2.9					4		4.4	4.6	4.8
				0.8					1.9									3.8			4.6	4.6
2				0.8			3.4	1.6	1.8				2.6	2.8					3.8	4	42	4.4
1.9	0.2	0.4	0.6	0.8	1	1.1				1.9					2.9				3.6	3.8	4	4.2
1.8	0.2	0.4	0.5	0.7	0.9	1.1	13		1.6	1.8						2.9	31		3.4	3.6	3.8	. 4
1.7	0.2	0.3	0.5	0.7	0.9	1					1.9				2.6						3.6	3.7
1.6	0.2	0.3	0.5	0.6	0.8	1	1.1				1.8											3.5
1.5	0.2	0.3	0.5	0.6	0.8	0.9	11		1.4			1.8				2.4						3.3
1.4	0.1	0.3	0.4	0.6	0.7	0.8	1	1.1												2.8		3.1
1.3	0.1	0.3	0.4	0.5	0.7	0.8	0.9	1						1.8								29
1.2	0.1	0.2	0.4	0.5	0.6	0.7	0.8	1	1.1						1.8							2.6
1.1	0.1	0.2	0.3	0.4	0.6	0.7	0.8	0.9		1.1						1.8						2.4
1	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		11							1.8				2.2
	01					0.5		00000		0.9	1	11										-
0.8						0.5			000000			1	1	11								1.8
0.7	0.1					0.4						0.8	0.9	-	11	11				14		15
0.6	0.1					0.4							0.8	0.8	0.9	1	1	11	11			1.5
0.5	0.1					0.3							2,202	0.7	0.8	0.8	0.9	0.9				11
0.4	0	0.1	0.1	0.2		0.2		-				-	-		17070	1000	12121	1000				0.9
0.3	0												0.4	-	0.5			0.5	10000			07
0.3												0.4		0.5	0.3	0.3	0.3	0.4	0.6			0.4
0.2		0		-												0.3						
0.1				100		0.6				_					-	-	-	-	1.9	-	-	2.2
	0.1	0.2	0.3	0.4	0.5	0.0	0.7	0.8	_	_	_	_	_	1.4	1.5	1.6	1.7	1.8	18	2	2.4	2.2
										Velo	city (m/s)										
	1	=XU	en	ie i	-az	arc	1															

Extreme Hazard	
High Hazard	
Significant Hazard	
Low Hazard	

	Low	Significant	High	Extreme
Depth	<0.5	<2	<2	2+
Velocity	<1.5	<2	<2	2+
x V Product	<0.6	0.6 to <0.8	0.8 to <1.2	1.2+

Real-time Flood Forecasting




Real-time Flood Forecasting

- Automated flood forecasting using Google Cloud GPU hardware
- NOAA rainfall forecast data
- Direct rainfall TUFLOW
 hydraulic simulation
- Real-time bridge inundation risk results are uploaded to a DoT website

