

"Where will our knowledge take you?"

2D Dam Failure Inundation Modeling

FMA 2018 Annual Conference Reno, Nevada Mitchell Smith

Overview

- Breach Formation
- Hydrograph Routing
- Physical and Empirical Methods
- Modeling Dam Break Dynamically in a 1D/2D Flood Model
- Learnings

Source: LA Times

Dam Failure Inundation Modeling

Main components of dam failure:

- 1. Breach formation
- 2. Breach hydrograph estimation
- 3. Hydrograph routing downstream

Level of rigor proportional to population, infrastructure and socio-environmentally sensitive areas at risk

Source: LA Times

Breach Formation

- Uncertainty
- Breach size and shape
- Time for breach to full develop
- Piping failure
- Overtopping failure

Source: Adapted from Gee, 2009

Source: Springer, FEMA and USDA

TUFLO

Breach Shape and Timing Estimation

Physically-based (sediment transport and erosion)

Empirically-based

- Type of embankment
- Base width of breach
- Top width of breach
- Headwater depth
- Volume of material removed
- Storage volume in reservoir
- Side slope of breach
- Start time of breach
- Time for breach to fully develop
- Duration of breach

Investigator	Equation for predict t_f
MacDonald and Langridge-Monopolis [8]	$t_f = 0.0179 \times (V_{er})^{0.364}$
Froehlich (1995) [19]	$t_f = 0.00254 \times V_w \times 0.53 \times H_b^{-0.9}$
Reclamation [1]	$t_f = 0.011 \times B_{ave}$
Von Thun and Gillette (hard erosion) [13]	$t_f = 0.02 \times H_w + 0.25$
Von Thun and Gillette (easy erosion) [13]	$t_f = 0.015 \times H_w$
Froehlich (2008) [4]	$t_f = 63.2 \times (v_w / 9.81 \times {H_b}^2)^{0.5}$

Hydrograph Estimation and Downstream Routing

Dam Breach Hydrograph

- Assume peak flow from dam Steady State
- Route hydrologically + dam breach
- Dynamically with 1D or 2D model

Downstream Routing

- Hydrologic model
- Dynamically route 1D
- Dynamically route 2D
- 1D and 2D models can allow you to model the impact on hydraulic structures

Camp Far West - California

Benchmarking Test Case 6A – UK EA

Benchmarking TUFLOW HPC Test Case 6A – UK EA

Location 1

BMT WBM

Location 2

Location 3

TUFLOW

TUFLOW HPC

- 1. Extremely fast Realistic modelling time for a *large downstream catchment*, *extreme dam failure velocities*, and *inclusion of dam bathymetry*
- 2. Dam wall can be modified during a simulation to emulate a dam failure
- 3. Improved estimation of flood wave dynamics for both in channel, the reservoir and on the floodplain
- 4. Outputs can be visualised and reported easily (inundation extents, and population at risk and potential loss of life estimates)

Case Study – Tasty Crocodile Dam

Catchment Details

- 1,800 sq mi
- 500 sq mi upstream of wall
- 50 mi to ocean

Dam Details

- Dam height 163 ft
- Capacity 890,000 ac ft
- Earth-fill embankment with central clay core
- Uncontrolled Ogee Spillway

Case Study – Tasty Crocodile Dam

- PMF + overtopping
 breach
- Use two differing methods to apply the dam breach hydrograph
- Investigate the impact on peak flows, timing and water levels downstream

Two Failure Modeling Approaches

Model Feature	1. FULLY DYNAMIC	2. "LUMPED"	
Breach Parameters	Spreadsheet derivation of breach shape and time		
Downstream Routing	Dynamically modelled in 1D/2D Flood Model		
Inflows	PMF Hydrograph		
Dam Breach Hydrograph	Generated by 1D/2D Model Topography	Spreadsheet Model (Level Pool). Applied downstream of dam.	
Reservoir Routing	All within 1D/2D Flood Model	Spreadsheet Model (Level Pool)	

Case Study – Tasty Crocodile Dam

- LIDAR
- Detailed survey
- Crest and spillway
- Bathymetry

Approach 1 - Fully Dynamic Breach

Variable geometry

- Dynamically breach dam during simulation
- Triggered by water level in reservoir
- Spillway discharge curve in 1D/2D

Approach 2 Lumped Breach

- Spreadsheet routing of dam
- Spillway + breach + overtopping lumped
- Consistent breach shape
 and timing

So Question 1???? Which is the 'right' answer....

So Question 1???? Which is the 'right' answer....

Which is 'right'??? Good question.....

Comparison of Breach Hydrographs – Interesting...

- Breach in spreadsheet and model slightly different
- Routing through the reservoir
- Not still pool routing (gradient in reservoir)
- Tailwater effects?

Flow Attenuation – 1, 8 and 25 Miles Downstream

Flow Attenuation – Both Runs – 25 Miles Downstream

Hydrograph shape and peakedness differ between methods which may be due to dynamic effects during drawdown

However... Presence of a constriction in the floodplain is the control under extreme flows

This won't exist for all models though...

Would I have saved some time by firstly running a series of extreme flows through the model and comparing the water level, velocity and discharge results downstream?

Shows the importance of hydraulic routing on attenuating the breach hydrograph and the influence of tailwater

Knowledge gained by sensitivity testing will usually save you in the long run...

Conclusion

- Breach formation and timing remains a major uncertainty
- Peak flows from 'lumped' and 'dynamic' models are in the same ball park.
- Very interesting differences in shape between the two hydrographs
- Downstream effects cannot be ignored
- Sensitivity testing Fast and accurate 2D flood models of the catchment downstream can allow you to concentrate your energy on what matters
- To be continued...

