

2D Model Design Fundamentals What 2D mesh resolution is necessary?

2018 FMA Conference Reno, USA Chris Huxley

"Where will our knowledge take you?"

Presentation Introduction and Overview

What is Cell Size Convergence?

"In well designed modelling software - cell size convergence refers to the tendency for model results to trend towards a common answer as cell size decreases"

Why is it worth talking about?

Small cell size = lots of cells = long simulations

Presentation Introduction and Overview

What is Cell Size Convergence?

"In well designed modelling software - cell size convergence refers to the tendency for model results to trend towards a common answer as cell size decreases"

Why is it worth talking about?

Small cell size = lots of cells = long simulations

What's necessary?

- 1. Rural situations Scenario testing
- 2. Urban situations Scenario testing
- 3. Comparison to 2D modelling guideline

Australian Rainfall & Runoff

Revision Projects

PROJECT 15

Two Dimensional Modelling in Urban and Rural floodplains

STAGE 1&2 REPORT

P15/S1/009

NOVEMBER 2012

2D Modelling Guideline Urban and Rural Floodplains (ARR, 2012)

Factors to consider:

- The scale of topographic and flow phenomena
- The desired level of output detail
- the length of event time and model run time
- The size of the area of interest

Recommendations:

Modelling Case	Typical 2D Cell Resolution
Flow in Channel	≥ 5 grid/mesh elements laterally across the channel
Urban Overland	6ft to 15ft (2m to 5m)
Flow in Floodplain	30ft to 150ft (10m to 50m)
Lakes and Estuaries	Flexible mesh – range of cell sizes

Australian Rainfall & Runoff

Revision Projects

PROJECT 15

Two Dimensional Modelling in Urban and Rural floodplains

STAGE 1&2 REPORT

P15/S1/009

NOVEMBER 2012

Rural Case Study UK Environment Agency - Test 5

Test Cases

- 1. 10m (33ft)
- 2. 20m (66ft)
- 3. 50m (164ft)
- 4. 100m (328ft)
- 5. 150m (492ft)
- 6. 200m (656ft)
- 7. 250m (820ft)

Rural Case Study UK Environment Agency - Test 5

Test Cases

- 1. 10m (33ft)
- 2. 20m (66ft)
- 3. 50m (164ft)
- 4. 100m (328ft)
- 5. 150m (492ft)
- 6. 200m (656ft)

7. 250m (820ft) TUFLOW HPC – 1 x NVIDIA GeForce GTX 1080 Ti GPU card

Test	Runtime	Convergence
1. 33ft	284s	Baseline
2. 66ft	98s	\checkmark
3 . 164	ft 32s	
4. 328	ft 15s	
5 . 492	ft 10s	
<mark>6</mark> . 656	ft 9s	
7. 820	ft 7s	

Test	Runtime	Convergence
1. 33ft	284s	Baseline
2. 66ft	t 98s	\checkmark
3. 164	ft 32s	\checkmark
4. 328	ft 15s	
5 . 492	tt 10s	
<mark>6</mark> . 656	oft 9s	
7. 820	oft 7s	

Test	Runtime	Convergence
1. 33ft	284s	Baseline
2. 66ft	98s	\checkmark
3. 164	ft 32s	\checkmark
4. 328	ft 15s	\checkmark
5. 492	ft 10s	
6. 656	ft 9s	
7. 820	ft 7s	

Test	Runtim	e Conve	rgence
1. 33	ft 284s	s Base	eline
2. 66	ft 98s	s 🗸	
3. 16	4ft 32s	s 🗸	
4. 32	8ft 15s	s 🗸	
5. 49	2ft 10s	s x	
<mark>6</mark> . 65	6ft 9s	\$	
7. 82	Oft 7s	\$	

Те	est	Runtime	Convergence
1.	33ft	284s	Baseline
2.	66ft	98s	\checkmark
3.	164ft	32s	\checkmark
4.	328ft	: 15s	\checkmark
5.	492ft	: 10s	×
6.	656ft	9s	×
7.	820ft	. 7s	

Reporting Point 4

Τε	est	Runtime	Convergence
1.	33ft	284s	Baseline
2.	66ft	98s	\checkmark
3.	164ft	32s	\checkmark
4.	328ft	15s	\checkmark
5.	492ft	10s	×
6.	656ft	9s	×
7.	820ft	7s	×

Result Discussion Guideline Comparison

- Flow magnitude means valley is acting like an open channel
- Convergence observed when ≥ 5 grid elements laterally across the valley
- Results agree with guideline recommendations
- Optimum resolution depends on modelling objectives
- Why is this resolution necessary?
 - 1. To adequately represent the valley cross-section shape
 - 2. To adequately define the cross-channel velocity distribution

Accurate velocity results is essential for accurate treatment of momentum and inertia!

Result Discussion Recorded Water Levels

14.4 ft

4.4 m

12.1 ft

3.81

3.7 m

Angular momentum causes super-elevation of water surface on the outside bend.

Multiple velocity calculation points are necessary across channel to reproduce this behaviour in a model

Urban Case Study

- 21² mile (54km²) catchment
- Hypothetical 24hr storm

- Direct rainfall approach
- 2D overland
- 1D open channel
- 1D pipe

TUFLOW HPC – 1 x NVIDIA GeForce GTX 1080 Ti GPU card

Urban Case Study

Cell Resolution Test Cases

- 1. 10ft (3m): 5,821,000 cells
- 2. 15ft (4.5m): 4,042,000 cells
- 3. 20ft (6m): 2,588,000 cells
- 4. 30ft (9m): 647,000 cells
- 5. 50ft (15m): 233,000 cells
- 6. 75ft (23m): 104,000 cells

TUFLOW HPC – 1 x NVIDIA GeForce GTX 1080 Ti GPU card

Results

- 9.2hr simulation
- 10ft case used as baseline for analysis of coarser resolution results

TUFLOW

(dataset minus 10ft resolution model result)

Results

- 9.2hr simulation
- Target result for comparison

Result Discussion Guideline Comparison

- Resolution < 20ft (6m) is recommended
- Test results agree with the guideline recommendations
- Optimum resolution depends
 on modelling objectives
- Why is fine resolution necessary?
 - 1. Urban areas characteristically have many abrupt obstructions
 - 2. Fine resolution is needed to accurately represent the high variations in flow behavior (level and velocity) near obstructions

Presentation General Discussion

- ARR2012 2D Modelling guideline recommendations have been confirmed valid
- Does mesh convergence guarantee model results will be correct?
- NO!
- All models should be calibrated to historic events.
- There is no other independent way to identify accidental data errors in input
- TBC in another presentation

Thank you for watching

Please email suggestions for future technical webinars to support@tuflow.com

