High Resolution 1D/2D Stormwater Drainage Assessments using GPU Acceleration

Bill Syme Senior Principal, BMT

The Toowoomba Chronicle

Presentation Overview

- 1. Challenges and Complexities of Modelling Urban Areas
- 2. Necessity to Benchmark Models/Solutions
- 3. Game Changers GPU Acceleration and 2D Solution Enhancements

Challenges of Modelling Urban Areas Man-made Topography

Unnatural Flowpaths

- Non-meandering formations
- Engineered cross-sections
- Smooth (concrete) surfaces
- Steep longitudinal slopes

Solid Obstructions

- Buildings
- Fences
- Vehicles!

Challenges of Modelling Urban Areas Wide Range of Hydraulic Phenomena

Subcritical to supercritical flow

Still water to hydraulic jumps

Challenges of Modelling Urban Areas Energy Losses Everywhere

High velocities therefore high energy losses (Complex 3D flows)

- Manholes
- Junctions and bends

https://www.conteches.com

Creëlle, et al, Ghent University, Ghent, Belgium

1990 Flood Newcastle. Courtesy David Gibbins, Newcastle City Council.

Challenges of Modelling Urban Areas Pit Flow Capture

Sag pits

• Depth / Discharge curves

On-grade pits

- Approach flow / Discharge curves
- Varies with grade

Accurate 2D reproduction of depth or approach flow essential to model pit capture

Challenges of Modelling Urban Areas Low Impact Developments & Sustainable Drainage Systems

Water retention and infiltration

- 2D resolution usually too coarse
- Need soil infiltration (Green-Ampt, Horton, IL/CL)
- Represent surface imperviousness (e.g. bitumen over soil)

rdenvisit.com/blog/suds-lid-wsud-urban-drainage-systems-and-landscape-architecture/

Challenges of Modelling Urban Areas Modelling Fences!

Should we or should we not?

If yes need to be able to

- Raise cell faces as a thin barrier
- · Cell faces wet and dry
- Layered parameters (vary blockage and losses with height)
- Switch between u/s and d/s controlled weir flow

Collapsible fences?

Challenges of Modelling Urban Areas Blockages!

Increasingly the effect of blockages being sought Very challenging to model as unpredictable!

UFLOW

Benchmarking Model Calibration

Calibrate, calibrate, calibrate!

...but rare in urban areas

1990 Flood Newcastle - TUFLOW Model Calibration.

Benchmarking Flume Tests – Flow Against a Building

Benchmarking Flow Against a Building Flume Model

- Hydraulic jump forms in front of building
- Eddy shedding downstream of building
- Jump propagates upstream as flow eases

Benchmarking Flow Against a Building Flume Model

Which result is least U (m/s) 0.000e+000.5 2.000e+001.5 UK EA Test 06A - 2nd Order Time: 0.00 s

wrong?

Benchmarking Flow Against a Building

With turbulence (eddy viscosity)

Without turbulence (eddy viscosity)

Location 1

Location 2

Location 3

Benchmarking Flow Against a Building Flume Model

Game Changers GPU Acceleration

TUFLOW Classic (Implicit Solver)

Central Processing Unit (CPU)

TUFLOW HPC (Explicit Solver)

VS

Graphic Processing Unit (GPU)

Case Study – Surfacewater Modelling Innisfail 1D Stormwater Network / 2D Surfacewater Flooding

Stormwater pipes

Inlet pits/drains (Linked to 2D ground surface)

Manholes and junctions

Pit Inlet Depth vs Flow Curves

Manhole & Junction Losses

Fixed = QUDM compatible where required

Engelund method (elsewhere)

- 1) Expansion / contraction of flow
 - Changes in pipe size

2) 3)

4)

- Changes in angle at junctions
- Change in elevation at junctions

Case Study – Surfacewater Modelling Innisfail What 2D Cell Size Resolution?

Size	Cells
20 m	7,500
10 m	31,000
5 m	125,000
2 m	750,000
1 m	3,100,000
0.5 m	12,500,000

Case Study – Surfacewater Modelling Innisfail What 2D Cell Size Resolution?

Case Study – Surfacewater Modelling Innisfail What 2D Cell Size Resolution?

Game Changers 2D Solution Enhancements

Sub-Grid-Sampling

Quadtree Grid

Sub-grid turbulence (eddy viscosity) approach

2D Solution Enhancements Sub-Grid-Sampling (SGS)

2D Original Approach

- Cell storage based on one elevation (imagine a square tub)
- Cell faces rectangular flow area
- OK if grid resolution sufficiently fine

rdenvisit.com/blog/suds-lid-wsud-urban-drainage-systems-and-landscape-architecture/

2D Solution Enhancements Sub-Grid-Sampling (SGS)

2D Sub-Grid-Sampling

- Cell surface area (storage)
 varies with depth
- Cell face flow area varies with depth
- Utilises higher resolution DEM elevation data

2D Solution Enhancements Deep Sided Channels Unaligned to Grid

Mesh not aligned with deep banks (e.g. concrete drains)

- Distorts streamlines
- Artificial energy losses;
 steepens gradient

Solutions

- 1D channel with cross-section (time-consuming; full 2D solution compromised)
- Flexible mesh (quadrilaterals aligned with banks)
- Much finer gridded mesh (much longer run times)
- or...

2D Solution Enhancements Deep Sided Channels Unaligned to Grid

Solutions (cont...)

- Sub-grid-sampling
 - Cell storage and cell face flow areas adjusted
 - Streamlines parallel with banks
 - Conforming with Manning's equation at all orientations
 - Resolves limitation of using gridded meshes along deep sided channels ⁽²⁾
 - Allows coarser grids to be used (faster run times!) ^(C)

2D Solution Enhancements Quadtree Meshes

Quadtree

- Allows cells to be divided into 4
- Then these cells can be divided into 4
- And so on...
- Refinement only where necessary
- Efficient memory utilisation
- Faster simulation times
- Fast to set up

2D Solution Enhancements Quadtree Meshes – Innisfail Model

5 m Single Domain

5m – 2.5m – 1.25m Quadtree Domain

2D Solution Enhancements Quadtree Meshes – Pit Flow Capture

2D Solution Enhancements Quadtree with Sub-Grid-Sampling

Best of All Worlds!

- Quadtree increases hydraulic resolution where needed
 - Complex flows
 - Critical flow paths
- Sub-Grid-Sampling
 - Resolves flow along deep-sided channels
 not orientated with grid
 - Models narrow flow paths (e.g. minor drainage paths)
 - Storage at DEM resolution/accuracy

https://www.gardenvisit.com/blog/suds-lid-wsud-urban-drainage-systems-and-landscape-architecture/

2D Solution Enhancements Turbulence Approach

Eddy Viscosity: "The turbulent transfer of momentum by eddies giving rise to an internal fluid friction, in a manner analogous to the action of molecular viscosity"

Estimates losses for sub-grid (sub-cell) turbulence

2D Solution Enhancements Turbulence Approach

2D models are becoming finer and finer

- Hardware / software enhancements
- DEM data improvements
- Quadtree / Flexible mesh

Existing turbulence approaches inappropriate (e.g. Smagorinsky)

- · especially when water depth exceeds cell size
- show mesh size dependency

New approach developed and tested (TUFLOW HPC engine developer, Greg Collecutt)

Conclusions

- Urban areas are challenging to model
- Benchmarking of schemes essential know their limitations!
- Calibration data and calibration of models highly beneficial
- **GPU** acceleration a game changer
- **GPU** with Sub-Grid-Sampling and Quadtree offer exciting opportunities
- Need new cell size insensitive eddy viscosity approach

thank you

(After) 2007 Flood, Newcastle

