
Storm Tide Inundation

Enable your team to effectively tackle the most complex storm tide inundation problems with TUFLOW.

They have been developed with three primary goals in

mind: accuracy, simulation

speed and workflow

efficiency.

As researchers, scientists and engineers we work in a range of industries that solve complex environmental problems. Our assessments span scales from the molecular, to the global, from the instantaneous to the inter-decadal. Our projects require flexible, accurate, fast and powerful tools backed up by research, benchmarking and support.

catchment flooding.

Storm tide driven elevated

ocean levels and storm

waves can inundate and

and propagate inland

over lowland areas and

careful risk assessment.

and warnings these risks

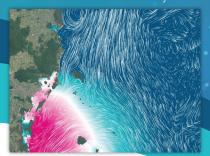
can be reduced.

impact property for hours

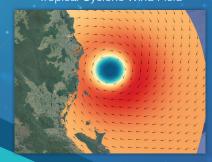
coastal estuaries for many

kilometers, often decimating

local communities. Through


statistical analyses, forecast

Script TUFLOW for Monte Carlo Design Storm Tide Analysis


TUFLOW Feature Focus

- Easily input spatially and temporally varying wind/pressure fields and parametric tropical cyclone tracks.
- Flexible mesh options enable you to efficiently represent coastal areas and overland without compromising on runtime.
- Compute at high speed with TUFLOW's heavily parrallelized and GPU compute capabilities perfect for Monte Carlo simulation.
- · Rapid model setup and result visualization through GIS integration.
- Assess wave / surge interaction and wave setup with TUFLOW's one or two-way coupled wave model integration.
- Model confidently with robust wetting and drying and stability for overland flooding.
- Include ocean circulation model sea surface anomalies and currents through TUFLOW's advanced but easy to use boundary conditions.

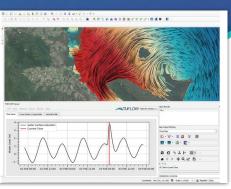
Water Level and Velocity

Tropical Cyclone Wind Field

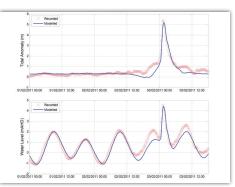
TUFLOW's hydraulic modeling engines offer industry-leading computational speed and numerical stability. Built within a flexible mesh framework, TUFLOW is especially well suited to storm tide inundation modeling in coastal regions and estuaries. TUFLOW is a world leader in this field:

- Accurate storm tide propagation modeling in the offshore and nearshore is achieved via the implementation of a 2nd order spatial schemes.
- The flexible mesh framework enables accurate high-resolution definition of complex geometries associated with the coastline and man-made infrastructure and structures.
- TUFLOW's speed facilitates high resolution street level resolution assessment and hazard mapping. It also enables efficient multiple event scenario analysis.

TUFLOW is uniquely integrated with GIS and GUI software such as ArcGIS, QGIS and SMS.


Develop models and

view results in your environment of choice. These complimentary GIS and GUI software are further supported by program specific plugins and free Matlab and Python script toolboxes to enhance model build efficiency, result visualization, statistical analysis, and report production. Further to this TUFLOW's scriptable design allows the user compete execution flexibility. Model single events or multiple scenarios within a Monte Carlo framework with ease.


Develop accurate and meaningful hazard mapping outputs of inundation level, depth, velocity, velocity depth product, evacuation route inundation arrival time, inundation duration and hazard category using TUFLOW.

For more information: info@tuflow.com

www.tuflow.com

Storm Tide Result Visualization

Storm Tide Calibration

